1
|
Li X, Liu NX, Sun JT, Nie XD, Si CM, Wei BG. An [(IPr)AuCl]-catalyzed formal [4+2] process of N-Ar N, O-acetals with arylacetylenes for the construction of pyrrolo[1,2- a]quinolines. Chem Commun (Camb) 2025. [PMID: 40357817 DOI: 10.1039/d5cc01581b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
An efficient approach to access functionalized pyrrolo[1,2-a]quinolone skeletons was developed through [(IPr)AuCl]-catalyzed formal intermolecular [4+2] reaction of N-Ar N,O-acetals 6a-6h with arylacetylenes 7a-7r. As a result, a series of 3,3a-dihydropyrrolo[1,2-a]quinolin-1(2H)-one derivatives 8a-8o and 9a-9n were synthesized with excellent regioselectivity.
Collapse
Affiliation(s)
- Xin Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Nai-Xuan Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xiao-Di Nie
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Chang-Mei Si
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Kuranaga T, Koyama A, Asano J, Matsumoto T, Kakeya H. Twisted Amide-Mediated Synthesis and Rapid Structure-Activity Relationship Study of Medium-Sized Cyclic Peptides. Chemistry 2025; 31:e202500331. [PMID: 40000398 DOI: 10.1002/chem.202500331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Medium-sized cyclic peptides are expected to be ideal drug leads because these peptides combine the advantages, while compensating for the disadvantages, of small molecules and antibodies. Although medium-sized peptides can be produced by chemical synthesis, two major problems, namely (i) Cα-epimerization during C-terminal modification and (ii) side reactions in the cyclization, remain to be solved. These issues have hampered the synthesis of pure materials for bioassays, making it difficult to accomplish accurate structure-activity relationship (SAR) studies. Herein, we report an efficient synthesis of medium-sized cyclic peptides based on the twisted amide-mediated amidation strategy. First, a variety of linear peptides were synthesized by the "inverse" peptide synthesis and fragment coupling. Second, the C-terminus of the linear peptides were converted to twisted amides, which were then reacted with a variety of α-amino acyl sulfonamides, realizing the rapid C-terminal diversification of peptides. Finally, the resulting linear peptides were cyclized by the intramolecular twisted amide-mediated amidation to afford stereochemically pure cyclic peptides. Using this strategy, total synthesis of acyl-surugamide A, the stereoselective synthesis of 13 non-natural analogs, and the discovery of potent antimicrobial/antifungal peptides beyond the natural product were also achieved.
Collapse
Grants
- 17H06401, 19H02840, 22H04901, 23H04882, 24H00493 the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- 22K05112 the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
- 24ama221540h0001, 24ama121034j0003 the Japan Agency for Medical Research and Development (AMED), Japan
- Takeda Science Foundation
- Tokyo Biochemical Research Foundation
- the foundation of Tokyo Chemical Industry
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ai Koyama
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junta Asano
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takumi Matsumoto
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Takayanagi H, Oku N, Yamazaki K, Miura T. Synthesis of α-Boryl-α-Substituted Allylboronates from Propyne. Org Lett 2024; 26:10108-10113. [PMID: 39537146 DOI: 10.1021/acs.orglett.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A novel method for the two-step synthesis of α-boryl-α-substituted allylboronates from propyne is described. These allylboronates are prepared by the Co-catalyzed 1,1-diboration reaction of propyne with B2pin2, followed by the base-mediated alkylation reaction of 1,1-di(boryl)propene at the α-position. Computational studies revealed the origins of observed reactivity and selectivity in the base-mediated alkylation reaction. The resulting α-boryl-α-methyl-allylboronate is applied to the allylation of aldehydes, which gives homoallylic alcohols with a trisubstituted alkene moiety.
Collapse
Affiliation(s)
- Hiro Takayanagi
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| | - Naoki Oku
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | - Ken Yamazaki
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Zhang H, Xie F, Yuan XY, Dai XT, Tian YF, Sun MM, Yu SQ, Cai JY, Sun B, Zhang WC, Shan CL. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin 2024; 45:1044-1059. [PMID: 38326625 PMCID: PMC11053100 DOI: 10.1038/s41401-024-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xiao-Ya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xin-Tong Dai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yun-Feng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ming-Ming Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Si-Qi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Jia-You Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Wei-Cheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Chang-Liang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
5
|
Wang J, Guo C, Liu Y, Ji Y, Jia H, Li H. Enantioselective Synthesis of the 1,3-Dienyl-5-Alkyl-6-Oxy Motif: Method Development and Total Synthesis. Angew Chem Int Ed Engl 2024; 63:e202400478. [PMID: 38270494 DOI: 10.1002/anie.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
The 1,3-dienyl-5-alkyl-6-oxy motif is widely found in various types of bioactive natural products. However, present synthesis is mainly non-asymmetric which relied upon different olefination or transition metal-catalyzed cross-coupling reactions using enantioenriched precursors. Herein, based upon a newly developed enantioselective α-alkylation of conjugated polyenoic acids, a variety of 1,3-dienyl-5-alkyl-6-oxy motif (with E-configured internal olefin) was generated as the corresponding α-adducts in a highly enantioselective and diastereoselective manner. Utilizing 1,3-dienyl-5-alkyl-6-oxy motif as key intermediates, we further demonstrated their synthetic potential by expedient total syntheses of three types of natural products (glutarimide antibiotics, α-pyrone polyketides and Lupin alkaloids) within 4-7 steps.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Chuning Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yaqian Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Yunpeng Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Hongli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| |
Collapse
|
6
|
Yoshida M, Okoshi Y, Kigoshi H. Concise total synthesis and structure revision of metacridamides A and B. Chem Commun (Camb) 2023; 59:9880-9883. [PMID: 37492955 DOI: 10.1039/d3cc01694c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Concise total synthesis of metacridamides A and B was accomplished through repetitive vinylogous Mukaiyama aldol reactions and ynamide-mediated macrolactonization. Spectral data of both synthetic products were identical to those of the natural products, resulting in the revision of the absolute configuration of the C-9 position to be S.
Collapse
Affiliation(s)
- Masahito Yoshida
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yuhi Okoshi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Hideo Kigoshi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan.
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
- Alliance for the Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
7
|
Miyakita D, Kawanishi K, Katsuyama A, Yamamoto K, Yakushiji F, Ichikawa S. Solid-Phase Synthesis of Nannocystin Ax and Its Analogues. J Org Chem 2023. [PMID: 37466434 DOI: 10.1021/acs.joc.3c01189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Solid-phase total synthesis of nannocystin Ax (1) was disclosed. A coupling reaction between a peptide and a polyketide moiety was conducted on a solid support, and macrocyclization was achieved by Mitsunobu cyclization. The established synthetic route was efficient to prepare its analogues, which contain different types of peptide moieties.
Collapse
Affiliation(s)
- Daiki Miyakita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kohei Kawanishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Kazuki Yamamoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Fumika Yakushiji
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|
9
|
Nomula R, Pratapure MS, Kontham R. Studies Directed Toward the Total Synthesis of Nannocystin A. ChemistrySelect 2022. [DOI: 10.1002/slct.202203893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rajesh Nomula
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Madhukar S. Pratapure
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ravindar Kontham
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Hou Y, Liu R, Xia M, Sun C, Zhong B, Yu J, Ai N, Lu JJ, Ge W, Liu B, Chen X. Nannocystin ax, an eEF1A inhibitor, induces G1 cell cycle arrest and caspase-independent apoptosis through cyclin D1 downregulation in colon cancer in vivo. Pharmacol Res 2021; 173:105870. [PMID: 34500061 DOI: 10.1016/j.phrs.2021.105870] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide. Nannocystin ax (NAN), a 21-membered cyclodepsipeptide initially isolated from myxobacteria of the Nannocystis genus, was found to target the eukaryotic elongation factor 1A (eEF1A). The current study was designed to evaluate the anticancer effect and underlying mechanisms of NAN with in vitro and in vivo models. Results showed that NAN induced G1 phase cell cycle arrest and caspase-independent apoptosis in HCT116 and HT29 human CRC cells. NAN significantly downregulated cyclin D1 level in a short time, but NAN did not affect the transcription level and ubiquitin-dependent degradation of cyclin D1. Furthermore, NAN treatment directly targeted eEF1A and partially decreased the synthesis of new proteins, contributing to the downregulation of cyclin D1. Besides, NAN significantly suppressed tumor growth in the zebrafish xenograft model. In conclusion, NAN triggered G1 phase cell cycle arrest through cyclin D1 downregulation and eEF1A-targeted translation inhibition and promoted caspase-independent apoptosis in CRC cells.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chong Sun
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bingling Zhong
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jie Yu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jin-Jian Lu
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiuping Chen
- Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
11
|
Sun C, Liu R, Xia M, Hou Y, Wang X, Lu JJ, Liu B, Chen X. Nannocystin Ax, a natural elongation factor 1α inhibitor from Nannocystis sp., suppresses epithelial-mesenchymal transition, adhesion and migration in lung cancer cells. Toxicol Appl Pharmacol 2021; 420:115535. [PMID: 33848516 DOI: 10.1016/j.taap.2021.115535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT), the epithelial cells transdifferentiation into the mesenchymal cells, has been involved in cancer metastasis. Nannocystin ax (NAN) is a cyclodepsipeptide initially isolated from Myxobacterial genus, Nannocystis sp. with anticancer activities. This study was designed to explore the effect of NAN on TGF-β1-induced EMT in lung cancer cells. The morphological alteration was observed with a microscope. Western blotting and immunofluorescence assays were used to detect the protein expression and the localization. The adhesion and migration were evaluated by adhesion assay and wound healing assay. The mRNA expression of TGF-β receptor type I (TβRI) was determined by real-time PCR. NAN significantly restrained TGF-β1-induced EMT morphological changes, the protein expression of E-cadherin, N-cadherin, and Vimentin, etc. TGF-β1 activated phosphorylation and nuclear translocation of Smad2/3 were inhibited by NAN. Furthermore, NAN suppressed adhesion and migration triggered by TGF-β1. In addition, NAN significantly down-regulated TβRI on the transcriptional level directly. In summary, these results showed that NAN restrained TGF-β1-induced epithelial-mesenchymal transition, migration, and adhesion in human lung cancer cells. The underlying mechanism involved the inhibition of Smad2/3 and the TβRI signaling pathway. This study reveals the new anticancer effect and mechanism of NAN.
Collapse
Affiliation(s)
- Chong Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Rong Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Mengwei Xia
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Bo Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China.
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
12
|
Optimization of Two Steps in Scale-Up Synthesis of Nannocystin A. Mar Drugs 2021; 19:md19040198. [PMID: 33807472 PMCID: PMC8066987 DOI: 10.3390/md19040198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023] Open
Abstract
We have accomplished a 10-step (longest linear) total synthesis of nannocystin A on a four hundred milligram scale. The previously reported Kobayashi vinylogous Mukaiyama aldol reaction to connect C4 and C5 was unreproducible during the scaling up process. A more convenient and cost-efficient Keck asymmetric vinylogous aldol reaction was employed to improve this transformation.
Collapse
|
13
|
Zwick CR, Sosa MB, Renata H. Modular Chemoenzymatic Synthesis of GE81112 B1 and Related Analogues Enables Elucidation of Its Key Pharmacophores. J Am Chem Soc 2021; 143:1673-1679. [PMID: 33416325 DOI: 10.1021/jacs.0c13424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The GE81112 complex has garnered much interest due to its broad antimicrobial properties and unique ability to inhibit bacterial translation initiation. Herein we report the use of a chemoenzymatic strategy to complete the first total synthesis of GE81112 B1. By pairing iron and α-ketoglutarate dependent hydroxylases found in GE81112 biosynthesis with traditional synthetic methodology, we were able to access the natural product in 11 steps (longest linear sequence). Following this strategy, 10 GE81112 B1 analogues were synthesized, allowing for identification of its key pharmacophores. A key feature of our medicinal chemistry effort is the incorporation of additional biocatalytic hydroxylations in modular analogue synthesis to rapidly enable exploration of relevant chemical space.
Collapse
Affiliation(s)
- Christian R Zwick
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Max B Sosa
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hans Renata
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Saridakis I, Kaiser D, Maulide N. Unconventional Macrocyclizations in Natural Product Synthesis. ACS CENTRAL SCIENCE 2020; 6:1869-1889. [PMID: 33274267 PMCID: PMC7706100 DOI: 10.1021/acscentsci.0c00599] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/12/2023]
Abstract
Over the past several decades, macrocyclic compounds have emerged as increasingly significant therapeutic candidates in drug discovery. Their pharmacological activity hinges on their rotationally restricted three-dimensional orientation, resulting in a unique conformational preorganization and a high enthalpic gain as a consequence of high-affinity macrocycle-protein binding interactions. Synthetic access to macrocyclic drug candidates is therefore crucial. From a synthetic point of view, the efficiency of macrocyclization events commonly suffers from entropic penalties as well as undesired intermolecular couplings (oligomerization). Although over the past several decades ring-closing metathesis, macrolactonization, or macrolactamization have become strategies of choice, the toolbox of organic synthesis provides a great number of versatile transformations beyond the aforementioned. This Outlook focuses on a selection of examples employing what we term unconventional macrocyclizations toward the synthesis of natural products or analogues.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
- Research
Platform for Next Generation Macrocycles, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
15
|
From Target-Oriented to Motif-Oriented: A Case Study on Nannocystin Total Synthesis. Molecules 2020; 25:molecules25225327. [PMID: 33203102 PMCID: PMC7697126 DOI: 10.3390/molecules25225327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/14/2023] Open
Abstract
Natural product total synthesis is in essence target-oriented in that a set of organic transformations are orchestrated into a workable process, leading ultimately to the target molecule with a predefined architecture. For a bioactive lead, proof of synthetic viability is merely the beginning. Ensuing effort repurposes the initial synthesis for structural diversification in order to probe structure-activity relationship (SAR). Yet accessibility is not equal to flexibility; moving from convergency to divergency, it is not always feasible to explore the chemical space around a particular substructure of interest simply by tweaking an established route. In this situation, the motif-oriented strategy becomes a superior choice, which gives priority to synthetic flexibility at the concerned site such that a route is adopted only if it is capable of implementing diversification therein. This strategy was recently devised by Fürstner et al., enabling them to achieve total synthesis of both natural and non-natural nannocystins varied at an otherwise challenging position. The present review examines seven distinctive nannocystin total syntheses reported thus far and showcases the merits of conventional (target-oriented) as well as motif-oriented strategies, concluding that these two approaches complement each other and are both indispensable for natural product based drug discovery.
Collapse
|
16
|
Chen J, Gao S, Chen M. Stereoselective Syntheses of γ,δ-Bifunctionalized Homoallylic Alcohols and Ethers via Chemoselective Allyl Addition to Aldehydes. Org Lett 2019; 21:9893-9897. [DOI: 10.1021/acs.orglett.9b03819] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jichao Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
17
|
Cordes M, Kalesse M. Very Recent Advances in Vinylogous Mukaiyama Aldol Reactions and Their Applications to Synthesis. Molecules 2019; 24:molecules24173040. [PMID: 31443344 PMCID: PMC6749529 DOI: 10.3390/molecules24173040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
It is a challenging objective in synthetic organic chemistry to create efficient access to biologically active compounds. In particular, one structural element which is frequently incorporated into the framework of complex natural products is a β-hydroxy ketone. In this context, the aldol reaction is the most important transformation to generate this structural element as it not only creates new C-C bonds but also establishes stereogenic centers. In recent years, a large variety of highly selective methodologies of aldol and aldol-type reactions have been put forward. In this regard, the vinylogous Mukaiyama aldol reaction (VMAR) became a pivotal transformation as it allows the synthesis of larger fragments while incorporating 1,5-relationships and generating two new stereocenters and one double bond simultaneously. This review summarizes and updates methodology-oriented and target-oriented research focused on the various aspects of the vinylogous Mukaiyama aldol (VMA) reaction. This manuscript comprehensively condenses the last four years of research, covering the period 2016-2019.
Collapse
Affiliation(s)
- Martin Cordes
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 1b, 30167 Hannover, Germany.
| |
Collapse
|
18
|
Tian Y, Wang J, Liu W, Yuan X, Tang Y, Li J, Chen Y, Zhang W. Stereodivergent total synthesis of Br-nannocystins underpinning the polyketide (10R,11S) configuration as a key determinant of potency. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Gao S, Chen J, Chen M. ( Z)-α-Boryl-crotylboron reagents via Z-selective alkene isomerization and application to stereoselective syntheses of ( E)-δ-boryl- syn-homoallylic alcohols. Chem Sci 2019; 10:3637-3642. [PMID: 30996958 PMCID: PMC6432281 DOI: 10.1039/c9sc00226j] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/03/2019] [Indexed: 11/21/2022] Open
Abstract
Stereoselective synthesis of (Z)-α-boryl-crotylboronate is developed. Ni-catalyzed Z-selective alkene isomerization of α-boryl substituted homoallylboronate provided the targeted (Z)-crotylboronate with high selectivity. Stereoselective addition of the novel crotylboron reagent to aldehydes gave (E)-δ-boryl-substituted syn-homoallylic alcohols with excellent diastereoselectivities. The vinyl boronate unit in the products can be directly used for a subsequent C-C bond-forming transformation as illustrated in the synthesis of the C1-7 fragment of the natural products nannocystin A and nannocystin Ax.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Jichao Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| | - Ming Chen
- Department of Chemistry and Biochemistry , Auburn University , Auburn , AL 36849 , USA .
| |
Collapse
|
20
|
Wang M, Gao S, Chen M. Stereoselective Syntheses of (E)-γ′,δ-Bisboryl-Substituted syn-Homoallylic Alcohols via Chemoselective Aldehyde Allylboration. Org Lett 2019; 21:2151-2155. [DOI: 10.1021/acs.orglett.9b00461] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mengzhou Wang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
21
|
|
22
|
De Leon Rodriguez LM, Williams ET, Brimble MA. Chemical Synthesis of Bioactive Naturally Derived Cyclic Peptides Containing Ene‐Like Rigidifying Motifs. Chemistry 2018; 24:17869-17880. [DOI: 10.1002/chem.201802533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
| | - Elyse T. Williams
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| | - Margaret A. Brimble
- School of Biological SciencesThe University of Auckland 3 Symonds St. Auckland 1142 New Zealand
- School of Chemical SciencesThe University of Auckland 23 Symonds St. Auckland 1142 New Zealand
| |
Collapse
|
23
|
Total synthesis and biological evaluation of nannocystin analogues modified at the polyketide phenyl moiety. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Heravi MM, Mohammadkhani L. Recent applications of Stille reaction in total synthesis of natural products: An update. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.05.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Tian Y, Xu X, Ding Y, Hao X, Bai Y, Tang Y, Zhang X, Li Q, Yang Z, Zhang W, Chen Y. Synthesis and biological evaluation of nannocystin analogues toward understanding the binding role of the (2R,3S)-Epoxide in nannocystin A. Eur J Med Chem 2018; 150:626-632. [DOI: 10.1016/j.ejmech.2018.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022]
|
26
|
Meng Z, Souillart L, Monks B, Huwyler N, Herrmann J, Müller R, Fürstner A. A “Motif-Oriented” Total Synthesis of Nannocystin Ax. Preparation and Biological Assessment of Analogues. J Org Chem 2017; 83:6977-6994. [DOI: 10.1021/acs.joc.7b02871] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhanchao Meng
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | | | - Brendan Monks
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Nikolas Huwyler
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarland University, 66123 Saarbrücken, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
27
|
Abstract
Nannocystin A is a novel 21-membered macrolactone isolated from myxobacterium Nanocystis sp. It is a potent elongation factor 1 inhibitor and inhibits cancer cell line growth at nanomolar concentrations. In this work, a concise asymmetric total synthesis of nannocystin A has been developed, which features Sharpless epoxidation, Stille coupling, and final macrolactamization.
Collapse
Affiliation(s)
- Qiang Liu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University , 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Ping Hu
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University , 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| | - Yun He
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University , 55 Daxuecheng South Road, Shapingba, Chongqing 401331, PR China
| |
Collapse
|
28
|
Affiliation(s)
- Caroline Poock
- Institute
for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ) Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany
| | - Markus Kalesse
- Institute
for Organic Chemistry and Centre of Biomolecular Drug Research (BMWZ) Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany
- Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|