1
|
Shafikov MZ, Zaytsev AV, Kozhevnikov VN, Czerwieniec R. Aligning π-Extended π-Deficient Ligands to Afford Submicrosecond Phosphorescence Radiative Decay Time of Mononuclear Ir(III) Complexes. Inorg Chem 2023; 62:810-822. [PMID: 36592328 DOI: 10.1021/acs.inorgchem.2c03403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report a profound investigation of the photophysical properties of three mononuclear Ir(III) complexes fac-Ir(dppm)3 (Hdppm-4,6-bis(4-(tert-butyl)phenyl)pyrimidine), Ir(dppm)2(acac) (acac-acetylacetonate), and Ir(ppy)2(acac) (Hppy-phenylpyridine). The heteroleptic Ir(dppm)2(acac) is found to emit with efficiency above 80% and feature a remarkably high rate of emission. As measured under ambient temperature, Ir(dppm)2(acac) emits with the unusually short (sub-μs) radiative decay time of τr = τem/ΦPL = 1/kr = 0.91 μs in degassed toluene and τr = 0.73 μs in a doped polystyrene film under nitrogen. Investigations at cryogenic temperatures in glassy toluene showed that the emission stems from the T1 state and thus represents T1 → S0 phosphorescence with individual decay times of the T1 substates of T1,I = 66 μs, T1,II = 7.3 μs, T1,III = 0.19 μs, and energy gaps between the substates of ΔE(T1,II-T1,I) = 14 cm-1 and ΔE(T1,III-T1,I) = 210 cm-1. Analysis of the electronic structure of Ir(dppm)2(acac) showed that such a high rate of phosphorescence may stem from the two dppm ligands, with extended π-conjugation system and π-deficient character due to the pyrimidine ring, being serially aligned along one axis. Such alignment, along with the quasi-symmetric character of Jahn-Teller distortions in the T1 state, affords a large chromophore, comprising four (het)aryl rings of the two dppm ligands. This affords an exceptionally large oscillator strength of the MLCT-character singlet state spin-orbit coupled with the T1 state and thus brings about enhancement of the phosphorescence rate. These findings reveal molecular design principles paving the way to new phosphors of enhanced emission rates.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053Regensburg, Germany
| | - Andrey V Zaytsev
- Department of Applied Sciences, Northumbria University, Newcastle upon TyneNE1 8ST, U.K
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon TyneNE1 8ST, U.K
| | - Rafał Czerwieniec
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053Regensburg, Germany
| |
Collapse
|
2
|
Gao J, Shi X, Luo Y, Zhang Z, Wang Y, Liang L, He G, Liu W, Tang D, Hu J. A promising strategy for increasing phosphorescent quantum yield: The ligand 10‐cyclic chelate of the tetradentate Pt(II) complex. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiaxing Gao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Yafei Luo
- Collaborative Innovation Center of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing China
| | - Zelan Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Yueteng Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Li Liang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Gang He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Wei Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| | - Dianyong Tang
- Collaborative Innovation Center of Targeted Therapeutics and Innovation, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, International Academy of Targeted Therapeutics and Innovation Chongqing University of Arts and Sciences Chongqing China
| | - Jianping Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department Chengdu University Chengdu China
| |
Collapse
|
3
|
Sun Y, Liu B, Guo Y, Chen X, Lee YT, Feng Z, Adachi C, Zhou G, Chen Z, Yang X. Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36020-36032. [PMID: 34283914 DOI: 10.1021/acsami.1c06148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The various applications of dinuclear complexes have attracted increasing attention. However, the electroluminescence efficiencies of dinuclear Pt(II) complexes are far from satisfactory. Herein, based on the triphenylamine core, we develop four dinuclear Pt(II) complexes that cover the emission colors from yellow to red with high photoluminescence quantum efficiencies of up to 0.79 in doped films. The solid-state structure of PyDPt is revealed by the single-crystal X-ray diffraction investigation. Besides, solution-processed OLEDs have been fabricated with different electron transport materials. With higher electron mobility and excellent hole-blocking ability, 1,3,5-tri(m-pyridin-3-ylphenyl)benzene (TmPyPB) can help to realize good charge balance in related OLEDs. In addition, angle-dependent PL spectra reveal the preferentially horizontal orientation of these dinuclear Pt(II) complexes in doped CBP films, which benefits the outcoupling efficiencies. Therefore, the yellow OLED based on PyDPt shows unexpected high performance with a peak current efficiency of up to 78.7 cd/A and an external quantum efficiency of up to 22.4%, which is the highest EQE reported for OLEDs based on dinuclear Pt(II) complexes so far. This study demonstrates the great potential of developing dinuclear Pt(II) complexes for achieving excellent electroluminescence efficiencies.
Collapse
Affiliation(s)
- Yuanhui Sun
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bochen Liu
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| | - Yue Guo
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| | - Xi Chen
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Zhao Feng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Guijiang Zhou
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhao Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P. R. China
| | - Xiaolong Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
4
|
Mauro M. Phosphorescent multinuclear complexes for optoelectronics: tuning of the excited-state dynamics. Chem Commun (Camb) 2021; 57:5857-5870. [PMID: 34075949 DOI: 10.1039/d1cc01077h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent transition metal complexes have attracted a great deal of attention in the last two decades from both fundamental and application points of view. The majority of the investigated and most efficient systems consist of monometallic compounds with judiciously selected ligand sphere, providing excellent triplet emitters for both lab-scale and real-market light-emitting devices for display technologies. More recently, chemical architectures comprising multimetallic compounds have appeared as an emerging and valuable alternative. Herein, the most recent trends in the field are showcased in a systematic approach, where the different examples are classified by metal center and ligand(s) scaffold. Their optical and electroluminescence properties are presented and compared as well. Indeed, the multimetallic strategy has proven to be highly suitable for compounds emitting efficiently in the challenging red to near-infrared region, yielding metal-based emitters with improved optical properties in terms of enhanced emission efficiency, shortened excited-state lifetime, and faster radiative rate constant. Finally, the advantages and drawbacks of the multimetallic approach will be discussed.
Collapse
Affiliation(s)
- Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR7504 Université de Strasbourg & CNRS 23 rue du Loess, 67083 Strasbourg, France.
| |
Collapse
|
5
|
Gong ZL, Tang K, Zhong YW. A Carbazole-Bridged Biscyclometalated Diplatinum Complex: Synthesis, Characterization, and Dual-Mode Aggregation-Enhanced Phosphorescence. Inorg Chem 2021; 60:6607-6615. [PMID: 33861581 DOI: 10.1021/acs.inorgchem.1c00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cationic carbazole-bridged biscyclometalated diplatinum complex 4 has been synthesized and characterized. Single-crystal X-ray analysis demonstrates that complex 4 displays a dimeric structure with noncovalent π-π stacking and unique double Pt-Pt interactions. In aerated dilute CH3CN, complex 4 is characterized by a very weak monomeric yellow emission (λemi = 547 nm; Φ = 0.51%), which is attributed to the triplet intraligand (3LC) excited state mixing with some charge transfer characters. In contrast, under aerated conditions, the dispersion of 4 in a mixed solvent of CH3CN/Et2O (1/9, v/v) or CH3CN/H2O (1/9, v/v) displays intense yellow (λemi = 550 nm; Φ = 35.5%; τ = 11.10 μs) and red emission (λemi = 635 nm; Φ = 14.1%; τ = 7.00 μs), respectively. These aggregation-induced phosphorescent emission enhancements are considered being caused by the oxygen-shielding effect and the molecular rigidification-induced decrease of nonradiative decays in the aggregate state. The morphology and size of the aggregates under these two conditions are examined by scanning electron microscope and dynamic light scattering analysis. The absorption and emission properties of 4 are further rationalized by time-dependent density functional theory calculations on a model compound.
Collapse
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Kun Tang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Cnudde M, Brünink D, Doltsinis NL, Strassert CA. Tetradentate N^N°N^N-type luminophores for Pt(II) complexes: Synthesis, photophysical and quantum-chemical investigation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Chen M, Xiao YP, Wang Y, Cheng W, Zhang J, Wang P, Ye SH, Tong BH. Highly efficient solution processed OLEDs based on iridium complexes with steric phenylpyridazine derivative. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
|
9
|
Shafikov MZ, Martinscroft R, Hodgson C, Hayer A, Auch A, Kozhevnikov VN. Non-Stereogenic Dinuclear Ir(III) Complex with a Molecular Rack Design to Afford Efficient Thermally Enhanced Red Emission. Inorg Chem 2021; 60:1780-1789. [DOI: 10.1021/acs.inorgchem.0c03251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marsel Z. Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
| | - Ross Martinscroft
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Craig Hodgson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Anna Hayer
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Armin Auch
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Valery N. Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
10
|
Puttock EV, Sturala J, Kistemaker JCM, Williams JAG. Platinum(II) Complexes of Tridentate ‐Coordinating Ligands Based on Imides, Amides, and Hydrazides: Synthesis and Luminescence Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emma V. Puttock
- Department of Chemistry Durham University DH1 3LE, U.K. Durham
| | - Jiri Sturala
- Department of Inorganic Chemistry University of Chemistry and Technology Prague Technicka 5 166 28 Prague 6 Czech Republic
| | - Jos C. M. Kistemaker
- Centre for Organic Photonics and Electronics The School of Chemistry and Molecular Biosciences University of Queensland 4072 Queensland Australia
| | | |
Collapse
|
11
|
Bonfiglio A, Pallova L, César V, Gourlaouen C, Bellemin‐Laponnaz S, Daniel C, Polo F, Mauro M. Phosphorescent Cationic Heterodinuclear Ir
III
/M
I
Complexes (M=Cu
I
, Au
I
) with a Hybrid Janus‐Type N‐Heterocyclic Carbene Bridge. Chemistry 2020; 26:11751-11766. [DOI: 10.1002/chem.202002767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Anna Bonfiglio
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| | - Lenka Pallova
- LCC-CNRS UPR8241 Université de Toulouse, CNRS 31077 Toulouse cedex 4 France
| | - Vincent César
- LCC-CNRS UPR8241 Université de Toulouse, CNRS 31077 Toulouse cedex 4 France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia Italy
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| |
Collapse
|
12
|
A flexible topo-optical sensing technology with ultra-high contrast. Nat Commun 2020; 11:1448. [PMID: 32193398 PMCID: PMC7081276 DOI: 10.1038/s41467-020-15288-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/25/2020] [Indexed: 01/17/2023] Open
Abstract
Elastic folding, a phenomenon widely existing in nature, has attracted great interests to understand the math and physical science behind the topological transition on surface, thus can be used to create frontier engineering solutions. Here, we propose a topo-optical sensing strategy with ultra-high contrast by programming surface folds on targeted area with a thin optical indicator layer. A robust and precise signal generation can be achieved under mechanical compressive strains (>0.4). This approach bridges the gap in current mechano-responsive luminescence mechanism, by utilizing the unwanted oxygen quenching effect of Iridium-III (Ir-III) fluorophores to enable an ultra-high contrast signal. Moreover, this technology hosts a rich set of attractive features such as high strain sensing, encoded logic function, direct visualisation and good adaptivity to the local curvature, from which we hope it will enable new opportunities for designing next generation flexible/wearable devices.
Collapse
|
13
|
Zhang Z, Tizzard GJ, Williams JAG, Goldup SM. Rotaxane Pt II-complexes: mechanical bonding for chemically robust luminophores and stimuli responsive behaviour. Chem Sci 2020; 11:1839-1847. [PMID: 34123277 PMCID: PMC8148368 DOI: 10.1039/c9sc05507j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report an approach to rotaxanes in which the metal ion of a cyclometallated PtII luminophore is embedded in the space created by the mechanical bond. Our results show that the interlocked ligand environment stabilises a normally labile PtII–triazole bond against displacement by competing ligands and that the crowded environment of the mechanical bond retards oxidation of the PtII centre, without perturbing the photophysical properties of the complex. When an additional pyridyl binding site is included in the axle, the luminescence of the PtII centre is quenched, an effect that can be selectively reversed by the binding of AgI. Our results suggest that readily available interlocked metal-based phosphors can be designed to be stimuli responsive and have advantages as stabilised triplet harvesting dopants for device applications. We report an approach to interlocked PtII luminophores in which the mechanical bond stabilises the coordination environment of the embedded metal ion.![]()
Collapse
Affiliation(s)
- Zhihui Zhang
- Chemistry, University of Southampton Southampton SO51 5PG UK
| | | | | | | |
Collapse
|
14
|
A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis. Biosens Bioelectron 2020; 147:111779. [DOI: 10.1016/j.bios.2019.111779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022]
|
15
|
Puttock EV, Sil A, Yufit DS, Williams JAG. Mono and dinuclear iridium(iii) complexes featuring bis-tridentate coordination and Schiff-base bridging ligands: the beneficial effect of a second metal ion on luminescence. Dalton Trans 2020; 49:10463-10476. [DOI: 10.1039/d0dt01964j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ditopic bis-N^N^O-coordinating ligands, prepared by Schiff base chemistry, lead to dinuclear iridium complexes that emit much more brightly than their mononuclear counterparts.
Collapse
Affiliation(s)
| | - Amit Sil
- Department of Chemistry
- Durham University
- Durham
- UK
| | | | | |
Collapse
|
16
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
17
|
Synthesis, structural characterization, and luminescence properties of mono- and di-nuclear platinum(II) complexes containing 2-(2-pyridyl)-benzimidazole. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Shafikov MZ, Daniels R, Pander P, Dias FB, Williams JAG, Kozhevnikov VN. Dinuclear Design of a Pt(II) Complex Affording Highly Efficient Red Emission: Photophysical Properties and Application in Solution-Processible OLEDs. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8182-8193. [PMID: 30753060 DOI: 10.1021/acsami.8b18928] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The light-emitting efficiency of luminescent materials is invariably compromised on moving to the red and near-infrared regions of the spectrum due to the transfer of electronic excited-state energy into vibrations. We describe how this undesirable "energy gap law" can be sidestepped for phosphorescent organometallic emitters through the design of a molecular emitter that incorporates two platinum(II) centers. The dinuclear cyclometallated complex of a substituted 4,6-bis(2-thienyl)pyrimidine emits very brightly in the red region of the spectrum (λmax = 610 nm, Φ = 0.85 in deoxygenated CH2Cl2 at 300 K). The lowest-energy absorption band is extraordinarily intense for a cyclometallated metal complex: at λ = 500 nm, ε = 53 800 M-1 cm-1. The very high efficiency of emission achieved can be traced to an unusually high rate constant for the T1 → S0 phosphorescence process, allowing it to compete effectively with nonradiative vibrational decay. The high radiative rate constant correlates with an unusually large zero-field splitting of the triplet state, which is estimated to be 40 cm-1 by means of variable-temperature time-resolved spectroscopy over the range 1.7 < T < 120 K. The compound has been successfully tested as a red phosphor in an organic light-emitting diode prepared by solution processing. The results highlight a potentially attractive way to develop highly efficient red and NIR-emitting devices through the use of multinuclear complexes.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie , Universität Regensburg , Universitätsstrasse 31 , Regensburg D-93053 , Germany
- Ural Federal University , Mira 19 , Ekaterinburg 620002 , Russia
- Department of Chemistry , University of York , Heslington, York YO10 5DD , U.K
| | - Ruth Daniels
- Department of Applied Sciences , Northumbria University , Newcastle upon Tyne NE1 8ST , U.K
| | | | | | | | - Valery N Kozhevnikov
- Department of Applied Sciences , Northumbria University , Newcastle upon Tyne NE1 8ST , U.K
| |
Collapse
|
19
|
Stoliaroff A, Rio J, Latouche C. Accurate computations to simulate the phosphorescence spectra of large transition complexes: simulated colors match experiment. NEW J CHEM 2019. [DOI: 10.1039/c9nj02388g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an ab initio investigation on the luminescence properties of three iridium(iii) complexes is reported.
Collapse
Affiliation(s)
- Adrien Stoliaroff
- Institut des Materiaux Jean Rouxel (IMN)
- Université de Nantes
- CNRS
- 44322 Nantes cedex 3
- France
| | - Jérémy Rio
- Institut des Materiaux Jean Rouxel (IMN)
- Université de Nantes
- CNRS
- 44322 Nantes cedex 3
- France
| | - Camille Latouche
- Institut des Materiaux Jean Rouxel (IMN)
- Université de Nantes
- CNRS
- 44322 Nantes cedex 3
- France
| |
Collapse
|
20
|
Zheng Y, Zhang DY, Zhang H, Cao JJ, Tan CP, Ji LN, Mao ZW. Photodamaging of Mitochondrial DNA to Overcome Cisplatin Resistance by a RuII
-PtII
Bimetallic Complex. Chemistry 2018; 24:18971-18980. [DOI: 10.1002/chem.201803630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| |
Collapse
|
21
|
Puttock EV, Walden MT, Williams JG. The luminescence properties of multinuclear platinum complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Su N, Wu ZG, Zheng YX. Highly efficient bluish green organic light-emitting diodes of iridium(iii) complexes with low efficiency roll-off. Dalton Trans 2018; 47:7587-7593. [PMID: 29790538 DOI: 10.1039/c8dt00952j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two novel iridium(iii) complexes Ir(BTBP)2mepzpy and Ir(BTBP)2phpzpy were successfully synthesized, in which 2',6'-bis(trifluoromethyl)-2,4'-bipyridine (BTBP) was used as the main ligand, and 2-(3-methyl-1H-pyrazol-5-yl)pyridine (mepzpy) and 2-(3-2-(3-phenyl-1H-pyrazol-5-yl))pyridine (phpzpy) were introduced as the ancillary ligands, respectively. Both Ir(iii) complexes displayed bluish green emission peaks at 486 and 487 nm with high quantum efficiencies of 0.73 and 0.69, respectively. The organic light-emitting diodes (OLEDs) with the structure of ITO/HATCN (hexaazatriphenylenehexacarbonitrile, 5 nm)/TAPC (bis[4-(N,N-ditolylamino)-phenyl]cyclohexane, 40 nm)/Ir(BTBP)2mepzpy or Ir(BTBP)2phpzpy (10 wt%): 2,6-DCzPPy (2,6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine, 10 nm)/TmPyPB (1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene, 30 nm)/LiF (1 nm)/Al (100 nm) exhibited high efficiencies with low efficiency roll-off. Especially, the device based on the Ir(BTBP)2mepzpy complex achieved a maximum current efficiency of 58.17 cd A-1 and a maximum external quantum efficiency of 25.33% with Commission Internationale de 1'Eclairage coordinates of (0.19, 0.43). These results indicate that novel cyclometalated Ir(iii) complexes for high efficiency OLEDs with low efficiency roll-off were obtained by our rational design.
Collapse
Affiliation(s)
- Ning Su
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | | | | |
Collapse
|
23
|
Yang X, Jiao B, Dang JS, Sun Y, Wu Y, Zhou G, Wong WY. Achieving High-Performance Solution-Processed Orange OLEDs with the Phosphorescent Cyclometalated Trinuclear Pt(II) Complex. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10227-10235. [PMID: 29504742 DOI: 10.1021/acsami.7b18330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclometalated Pt(II) complexes can show intense phosphorescence at room temperature. Their emission properties are determined by both the organic ligand and the metal center. Whereas most of the related studies focus on tuning the properties by designing different types of organic ligands, only several reports investigate the key role played by the metal center. To address this issue, phosphorescent Pt(II) complexes with one, two, and three Pt(II) centers are designed and synthesized. With more Pt(II) centers, the cyclometalated multinuclear Pt(II) complexes display red-shifted emissions with increased photoluminescence quantum yields. Most importantly, solution-processed organic light-emitting diodes (OLEDs) with the conventional device structure using the multinuclear Pt(II) complexes as emitters show excellent performance. The controlled device based on the conventional mononuclear Pt(II) complex shows a peak external quantum efficiency, current efficiency, and power efficiency of 6.4%, 14.4 cd A-1, and 12.1 lm W-1, respectively. The efficiencies are dramatically improved to 10.5%, 21.4 cd A-1, and 12.9 lm W-1 for the OLED based on the dinuclear Pt(II) complex and to 17.0%, 35.4 cd A-1, and 27.2 lm W-1 for the OLED based on the trinuclear Pt(II) complex, respectively. To the best of our knowledge, these efficiencies are among the highest ever reported for the multinuclear Pt(II) complex-based OLEDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom, Hong Kong , P. R. China
| |
Collapse
|
24
|
Daniels RE, McKenzie LK, Shewring JR, Weinstein JA, Kozhevnikov VN, Bryant HE. Pyridazine-bridged cationic diiridium complexes as potential dual-mode bioimaging probes. RSC Adv 2018; 8:9670-9676. [PMID: 31497293 PMCID: PMC6688561 DOI: 10.1039/c8ra00265g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/01/2018] [Indexed: 12/14/2022] Open
Abstract
A novel diiridium complex [(N^C^N)2Ir(bis-N^C)Ir(N^C^N)2Cl]PF6 (N^C^N = 2-[3-tert-butyl-5-(pyridin-2-yl)phenyl]pyridine; bis-N^C = 3,6-bis(4-tert-butylphenyl)pyridazine) was designed, synthesised and characterised. The key feature of the complex is the bridging pyridazine ligand which brings two cyclometallated Ir(iii) metal centres close together so that Cl also acts as a bridging ligand leading to a cationic complex. The ionic nature of the complex offers a possibility of improving solubility in water. The complex displays broad emission in the red region (λ em = 520-720 nm, τ = 1.89 μs, Φ em = 62% in degassed acetonitrile). Cellular assays by multiphoton (λ ex = 800 nm) and confocal (λ ex = 405 nm) microscopy demonstrate that the complex enters cells and localises to the mitochondria, demonstrating cell permeability. Further, an appreciable yield of singlet oxygen generation (Φ Δ = 0.45, direct method, by 1O2 NIR emission in air equilibrated acetonitrile) suggests a possible future use in photodynamic therapy. However, the complex has relatively high dark toxicity (LD50 = 4.46 μM), which will likely hinder its clinical application. Despite this toxicity, the broad emission spectrum of the complex and high emission yield observed suggest a possible future use of this class of compound in emission bioimaging. The presence of two heavy atoms also increases the scattering of electrons, supporting potential future applications as a dual fluorescence and electron microscopy probe.
Collapse
Affiliation(s)
- Ruth E Daniels
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Tyne and Wear NE1 8ST, Newcastle Upon Tyne, UK. ; Tel: +44 (0) 191 243 7430
| | - Luke K McKenzie
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, UK
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK. ; ; Tel: +44 (0) 114 2759040
| | - Jonathan R Shewring
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, UK
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Dainton Building, Sheffield S3 7HF, UK
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Tyne and Wear NE1 8ST, Newcastle Upon Tyne, UK. ; Tel: +44 (0) 191 243 7430
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK. ; ; Tel: +44 (0) 114 2759040
| |
Collapse
|
25
|
Shi C, Li Q, Zou L, Lv Z, Yuan A, Zhao Q. A Single-Anion-Based Red-Emitting Cationic Diiridium(III) Complex Bearing a Pyrimidine-Based Bridging Ligand for Oxygen Sensing. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chao Shi
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
- School of Material Science and Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| | - Qiuxia Li
- School of Material Science and Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| | - Liang Zou
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); 210023 Nanjing P. R. China
| | - Zhuang Lv
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); 210023 Nanjing P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering; Jiangsu University of Science and Technology; 212003 Zhenjiang P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM); Nanjing University of Posts and Telecommunications (NUPT); 210023 Nanjing P. R. China
| |
Collapse
|
26
|
Sadimenko AP, Okoh OO. Organometallic Complexes of Azines. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018:51-120. [DOI: 10.1016/bs.aihch.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
Knuckey KJ, Williams JAG. Photon Funnels for One-Way Energy Transfer: Multimetallic Assemblies Incorporating Cyclometallated Iridium or Rhodium Units Accessed by Sequential Cross-Coupling and Bromination. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|