1
|
Matreux T, Schmid A, Rappold M, Weller D, Çalışkanoğlu AZ, Moore KR, Bosak T, Dingwell DB, Karaghiosoff K, Guyot F, Scheu B, Braun D, Mast CB. Heat flows solubilize apatite to boost phosphate availability for prebiotic chemistry. Nat Commun 2025; 16:1809. [PMID: 39979313 PMCID: PMC11842809 DOI: 10.1038/s41467-025-57110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
Phosphorus is an essential building block of life, likely since its beginning. Despite this importance for prebiotic chemistry, phosphorus was scarce in Earth's rock record and mainly bound in poorly soluble minerals, with the calcium-phosphate mineral apatite as key example. While specific chemical boundary conditions have been considered to address this so-called phosphate problem, a fundamental process that solubilizes and enriches phosphate from geological sources remains elusive. Here, we show that ubiquitous heat flows through rock cracks can liberate phosphate from apatite by the selective removal of calcium. Phosphate's strong thermophoresis not only achieves its 100-fold up-concentration in aqueous solution, but boosts its solubility by two orders of magnitude. We show that the heat-flow-solubilized phosphate can feed the synthesis of trimetaphosphate, increasing the conversion 260-fold compared to thermal equilibrium. Heat flows thus enhance solubility to unlock apatites as phosphate source for prebiotic chemistry, providing a key to early life's phosphate problem.
Collapse
Affiliation(s)
- Thomas Matreux
- Systems Biophysics, Ludwig Maximilians University, Munich, Germany
- Laboratoire de Biophysique et Evolution, UMR CNRS-ESPCI 8231 Chimie Biologie Innovation, PSL University, Paris, France
| | - Almuth Schmid
- Systems Biophysics, Ludwig Maximilians University, Munich, Germany
| | | | - Daniel Weller
- Earth and Environmental Sciences, Ludwig Maximilians University, Munich, Germany
| | | | - Kelsey R Moore
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Donald B Dingwell
- Earth and Environmental Sciences, Ludwig Maximilians University, Munich, Germany
| | | | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, CNRS, IRD, Sorbonne Université, Paris, France
| | - Bettina Scheu
- Earth and Environmental Sciences, Ludwig Maximilians University, Munich, Germany
| | - Dieter Braun
- Systems Biophysics, Ludwig Maximilians University, Munich, Germany
| | - Christof B Mast
- Systems Biophysics, Ludwig Maximilians University, Munich, Germany.
| |
Collapse
|
2
|
Whitaker D, Powner MW. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 2024; 8:817-832. [PMID: 39333736 DOI: 10.1038/s41570-024-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/30/2024]
Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.
Collapse
Affiliation(s)
- Daniel Whitaker
- Department of Chemistry, University College London, London, UK.
| | | |
Collapse
|
3
|
Jia X, Zhang SJ, Zhou L, Szostak J. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides. Nucleic Acids Res 2024; 52:5451-5464. [PMID: 38726871 PMCID: PMC11162797 DOI: 10.1093/nar/gkae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
The emergence of RNA on the early Earth is likely to have been influenced by chemical and physical processes that acted to filter out various alternative nucleic acids. For example, UV photostability is thought to have favored the survival of the canonical nucleotides. In a recent proposal for the prebiotic synthesis of the building blocks of RNA, ribonucleotides share a common pathway with arabino- and threo-nucleotides. We have therefore investigated non-templated primer extension with 2-aminoimidazole-activated forms of these alternative nucleotides to see if the synthesis of the first oligonucleotides might have been biased in favor of RNA. We show that non-templated primer extension occurs predominantly through 5'-5' imidazolium-bridged dinucleotides, echoing the mechanism of template-directed primer extension. Ribo- and arabino-nucleotides exhibited comparable rates and yields of non-templated primer extension, whereas threo-nucleotides showed lower reactivity. Competition experiments confirmed the bias against the incorporation of threo-nucleotides. The incorporation of an arabino-nucleotide at the end of the primer acts as a chain terminator and blocks subsequent extension. These biases, coupled with potentially selective prebiotic synthesis, and the templated copying that is known to favour the incorporation of ribonucleotides, provide a plausible model for the effective exclusion of arabino- and threo-nucleotides from primordial oligonucleotides.
Collapse
Affiliation(s)
- Xiwen Jia
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Stephanie J Zhang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Lijun Zhou
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Wołos A, Roszak R, Żądło-Dobrowolska A, Beker W, Mikulak-Klucznik B, Spólnik G, Dygas M, Szymkuć S, Grzybowski BA. Synthetic connectivity, emergence, and
self-regeneration in the network of prebiotic
chemistry. Science 2020; 369:369/6511/eaaw1955. [DOI: 10.1126/science.aaw1955] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
The challenge of prebiotic chemistry is to
trace the syntheses of life’s key building blocks
from a handful of primordial substrates. Here we
report a forward-synthesis algorithm that
generates a full network of prebiotic chemical
reactions accessible from these substrates under
generally accepted conditions. This network
contains both reported and previously unidentified
routes to biotic targets, as well as plausible
syntheses of abiotic molecules. It also exhibits
three forms of nontrivial chemical emergence, as
the molecules within the network can act as
catalysts of downstream reaction types; form
functional chemical systems, including
self-regenerating cycles; and produce surfactants
relevant to primitive forms of biological
compartmentalization. To support these claims,
computer-predicted, prebiotic syntheses of several
biotic molecules as well as a multistep,
self-regenerative cycle of iminodiacetic acid were
validated by experiment.
Collapse
Affiliation(s)
- Agnieszka Wołos
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Rafał Roszak
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | | | - Wiktor Beker
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Barbara Mikulak-Klucznik
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Grzegorz Spólnik
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
| | - Mirosław Dygas
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
| | - Sara Szymkuć
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
| | - Bartosz A. Grzybowski
- Institute of Organic Chemistry,
Polish Academy of Sciences, Warsaw,
Poland
- Allchemy, Inc., Highland, IN,
USA
- Center for Soft and Living Matter of
Korea’s Institute for Basic Science (IBS), Ulsan,
South Korea
- Department of Chemistry, Ulsan
National Institute of Science and Technology,
Ulsan, South Korea
| |
Collapse
|
5
|
Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino-furanosyl nucleosides in water. Nat Commun 2018; 9:4073. [PMID: 30287815 PMCID: PMC6172253 DOI: 10.1038/s41467-018-06374-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Prebiotic nucleotide synthesis is crucial to understanding the origins of life on Earth. There are numerous candidates for life's first nucleic acid, however, currently no prebiotic method to selectively and concurrently synthesise the canonical Watson-Crick base-pairing pyrimidine (C, U) and purine (A, G) nucleosides exists for any genetic polymer. Here, we demonstrate the divergent prebiotic synthesis of arabinonucleic acid (ANA) nucleosides. The complete set of canonical nucleosides is delivered from one reaction sequence, with regiospecific glycosidation and complete furanosyl selectivity. We observe photochemical 8-mercaptopurine reduction is efficient for the canonical purines (A, G), but not the non-canonical purine inosine (I). Our results demonstrate that synthesis of ANA may have been facile under conditions that comply with plausible geochemical environments on early Earth and, given that ANA is capable of encoding RNA/DNA compatible information and evolving to yield catalytic ANA-zymes, ANA may have played a critical role during the origins of life.
Collapse
|
6
|
Fernández-García C, Grefenstette NM, Powner MW. Selective aqueous acetylation controls the photoanomerization of α-cytidine-5'-phosphate. Chem Commun (Camb) 2018; 54:4850-4853. [PMID: 29697101 DOI: 10.1039/c8cc01929k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids are central to information transfer and replication in living systems, providing the molecular foundations of Darwinian evolution. Here we report that prebiotic acetylation of the non-natural, but prebiotically plausible, ribonucleotide α-cytidine-5'-phosphate, selectively protects the vicinal diol moiety. Vicinal diol acetylation blocks oxazolidinone formation and prevents C2'-epimerization upon irradiation with UV-light. Consequently, acetylation enhances (4-fold) the photoanomerization of α-cytidine-5'-phosphate to produce the natural β-pyrimidine ribonucleotide-5'-phosphates required for RNA synthesis.
Collapse
|
7
|
Liang D, Ge D, Lv Y, Huang W, Wang B, Li W. Silver-Catalyzed Radical Arylphosphorylation of Unactivated Alkenes: Synthesis of 3-Phosphonoalkyl Indolines. J Org Chem 2018; 83:4681-4691. [DOI: 10.1021/acs.joc.8b00450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Deqiang Liang
- Department of Chemistry, Kunming University, Kunming 650214, China
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| | - Dandan Ge
- Department of Chemistry, Kunming University, Kunming 650214, China
| | - Yanping Lv
- Department of Chemistry, Kunming University, Kunming 650214, China
| | - Wenzhong Huang
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| | - Baoling Wang
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| | - Weili Li
- Yunnan Engineering Technology Research Center for Plastic Films, Kunming 650214, China
| |
Collapse
|
8
|
Fernández-García C, Coggins AJ, Powner MW. A Chemist's Perspective on the Role of Phosphorus at the Origins of Life. Life (Basel) 2017; 7:E31. [PMID: 28703763 PMCID: PMC5617956 DOI: 10.3390/life7030031] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 11/17/2022] Open
Abstract
The central role that phosphates play in biological systems, suggests they also played an important role in the emergence of life on Earth. In recent years, numerous important advances have been made towards understanding the influence that phosphates may have had on prebiotic chemistry, and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation, and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides, amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as a general acid-base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry, provide an increasingly clear message that understanding phosphate chemistry will be a key element in elucidating the origins of life on Earth.
Collapse
|