1
|
Li N, Gu ZG, Zhang J. Erasable Photopatterning of Stilbene-Based Metal-Organic Framework Films. SMALL METHODS 2023; 7:e2201231. [PMID: 36938901 DOI: 10.1002/smtd.202201231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/20/2023] [Indexed: 06/09/2023]
Abstract
The development of photosensitive materials for erasable photopatterning is of significant interest in anti-counterfeiting and information storage applications. Herein two kinds of stilbene-based metal-organic framework (MOF) films with layer by layer method for studying photopatterning is reported. The resulting 2D Zn2 (sdc)2 MOF film (sdc = 4,4'-stilbenedicarboxylate) exhibits excellent photosensitive features with a very short photoconversion time (<35 s) while the 3D MOF Zn4 O(sdc)6 film does not have the property due to the fact that only parallel and short distance arrangement of olefin groups in the adjacent MOF layers can trigger [2+2] photocycloaddition. Furthermore, the Zn2 (sdc)2 film indicates obvious reversible fluorescent photoswitch behavior between yellow and blue fluorescence emission, which can achieve high-efficient, erasable photopatterning with various sizes (ca. 20 microns to decimeter). This study not only develops a new kind of photosensitive crystalline network film but also provides erasable photopatterning from macroscopic to microscopic in optical applications.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhi-Gang Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Qin P, Okur S, Li C, Chandresh A, Mutruc D, Hecht S, Heinke L. A photoprogrammable electronic nose with switchable selectivity for VOCs using MOF films. Chem Sci 2021; 12:15700-15709. [PMID: 35003601 PMCID: PMC8654041 DOI: 10.1039/d1sc05249g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 02/02/2023] Open
Abstract
Advanced analytical applications require smart materials and sensor systems that are able to adapt or be configured to specific tasks. Based on reversible photochemistry in nanoporous materials, we present a sensor array with a selectivity that is reversibly controlled by light irradiation. The active material of the sensor array, or electronic nose (e-nose), is based on metal-organic frameworks (MOFs) with photoresponsive fluorinated azobenzene groups that can be optically switched between their trans and cis state. By irradiation with light of different wavelengths, the trans-cis ratio can be modulated. Here we use four trans-cis values as defined states and employ a four-channel quartz-crystal microbalance for gravimetrically monitoring the molecular uptake by the MOF films. We apply the photoprogrammable e-nose to the sensing of different volatile organic compounds (VOCs) and analyze the sensor array data with simple machine-learning algorithms. When the sensor array is in a state with all sensors either in the same trans- or cis-rich state, cross-sensitivity between the analytes occurs and the classification accuracy is not ideal. Remarkably, the VOC molecules between which the sensor array shows cross-sensitivity vary by switching the entire sensor array from trans to cis. By selectively programming the e-nose with light of different colors, each sensor exhibits a different isomer ratio and thus a different VOC affinity, based on the polarity difference between the trans- and cis-azobenzenes. In such photoprogrammed state, the cross-sensitivity is reduced and the selectivity is enhanced, so that the e-nose can perfectly identify the tested VOCs. This work demonstrates for the first time the potential of photoswitchable and thus optically configurable materials as active sensing material in an e-nose for intelligent molecular sensing. The concept is not limited to QCM-based azobenzene-MOF sensors and can also be applied to diverse sensing materials and photoswitches.
Collapse
Affiliation(s)
- Peng Qin
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Salih Okur
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Chun Li
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Abhinav Chandresh
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Dragos Mutruc
- Humboldt-Universität zu Berlin, Department of Chemistry & IRIS Adlershof Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Stefan Hecht
- Humboldt-Universität zu Berlin, Department of Chemistry & IRIS Adlershof Brook-Taylor-Strasse 2 12489 Berlin Germany
- DWI - Leibniz Institute for Interactive Materials Forckenbeckstr. 50 52074 Aachen Germany
- RWTH Aachen University, Institute of Technical and Macromolecular Chemistry Worringer Weg 2 52074 Aachen Germany
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Legrand A, Wang Z, Troyano J, Furukawa S. Directional asymmetry over multiple length scales in reticular porous materials. Chem Sci 2020; 12:18-33. [PMID: 34163581 PMCID: PMC8178947 DOI: 10.1039/d0sc05008c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In nature and synthetic materials, asymmetry is a useful tool to create complex and functional systems constructed from a limited number of building blocks. Reticular chemistry has allowed the synthesis of a wide range of discrete and extended structures, from which modularity permits the controlled assembly of their constituents to generate asymmetric configurations of pores or architectures. In this perspective, we present the different strategies to impart directional asymmetry over nano/meso/macroscopic length scales in porous materials and the resulting novel properties and applications. Design strategies for the controlled assembly of discrete and extended reticular materials with asymmetric configurations of pores or architectures.![]()
Collapse
Affiliation(s)
- Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Javier Troyano
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan .,Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
4
|
Tashiro S, Mitsui S, Burke DW, Kubota R, Matsushita N, Shionoya M. Core–shell metal–macrocycle framework (MMF): spatially selective dye inclusion through core-to-shell anisotropic transport along crystalline 1D-channels connected by epitaxial growth. CrystEngComm 2020. [DOI: 10.1039/d0ce00120a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Core–shell porous metal–macrocycle frameworks were fabricated via an epitaxial growth procedure to observe core-to-shell anisotropic transport of a dye.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Shinya Mitsui
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - David W. Burke
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Ryou Kubota
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Nobuyuki Matsushita
- Department of Chemistry
- College of Science and Research Center for Smart Molecules
- Rikkyo University
- Tokyo 171-8501
- Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry
- Graduate School of Science
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
5
|
Luo Y, Ahmad M, Schug A, Tsotsalas M. Rising Up: Hierarchical Metal-Organic Frameworks in Experiments and Simulations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901744. [PMID: 31106914 DOI: 10.1002/adma.201901744] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Controlled synthesis across several length scales, ranging from discrete molecular building blocks to size- and morphology-controlled nanoparticles to 2D sheets and thin films and finally to 3D architectures, is an advanced and highly active research field within both the metal-organic framework (MOF) domain and the overall material science community. Along with synthetic progress, theoretical simulations of MOF structures and properties have shown tremendous progress in both accuracy and system size. Further advancements in the field of hierarchically structured MOF materials will allow the optimization of their performance; however, this optimization requires a deep understanding of the different synthesis and processing techniques and an enhanced implementation of material modeling. Such modeling approaches will allow us to select and synthesize the highest-performing structures in a targeted rational manner. Here, recent progress in the synthesis of hierarchically structured MOFs and multiscale modeling and associated simulation techniques is presented, along with a brief overview of the challenges and future perspectives associated with a simulation-based approach toward the development of advanced hierarchically structured MOF materials.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Momin Ahmad
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Institute for Theoretical Solid State Theory, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputer Centre, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131, Karlsruhe, Germany
| |
Collapse
|
6
|
Xu J, Zheng S, Huang S, Tian Y, Liu Y, Zhang H, Sun J. Host–guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance. Chem Commun (Camb) 2019; 55:909-912. [DOI: 10.1039/c8cc07347c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Powerful oxidizer N2O was incorporated into an organic lattice cavity through aeration crystallization, and smart host–guest energetic materials with highly-energetic and low-sensitivity performance were obtained.
Collapse
Affiliation(s)
- Jinjiang Xu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| | - Shensheng Zheng
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| | - Shiliang Huang
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| | - Yong Tian
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| | - Yu Liu
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| | - Haobin Zhang
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| | - Jie Sun
- Institute of Chemical Materials
- China Academy of Engineering Physics
- Mianyang
- P. R. China
| |
Collapse
|
7
|
Sun MY, Chen DM. A porous Zn(II)-based metal–organic framework for highly selective and sensitive Fe3+ ion detection in water. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Xu D, You Y, Zeng F, Wang Y, Liang C, Feng H, Ma X. Disassembly of Hydrophobic Photosensitizer by Biodegradable Zeolitic Imidazolate Framework-8 for Photodynamic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15517-15523. [PMID: 29677444 DOI: 10.1021/acsami.8b03831] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT), an alternative to conventional cancer therapeutics, has gained increasing attention for its noninvasive advantage and simultaneous fluorescence imaging property. PDT is a tripartite process that functions in the simultaneous presence of a photosensitizer (PS), light, and available oxygen molecules. However, many highly efficient PSs are hydrophobic and highly tend to self-aggregate in aqueous solution, leading to quick quenching of the PDT effect. Here we construct zeolitic imidazolate framework-8 (ZIF-8) containing water-insoluble photosensitizer zinc(II) phthalocyanine (ZnPc), a typical hydrophobic PS, by one-step coprecipitation process, named as ZnPc@ZIF-8. The micropores of ZIF-8 act as molecular cages to separate and maintain hydrophobic ZnPc in the monomeric state and protect it against self-aggregation, which enables the encapsulated ZnPc to generate cytotoxic singlet oxygen (1O2) under light irradiation (650 nm) in aqueous condition. The formed nanosystem of ZnPc@ZIF-8 can be endocytosed by cancer cells and exhibits red fluorescent emission with excellent photodynamic activity for cancer treatment in vitro. In addition, ZnPc@ZIF-8 is acid-sensitive and would completely degrade after PDT, which can be monitored by the self-quenching of fluorescence emission of ZnPc. This work paves a facile way for resolving the problem of solubility and bioavailability of hydrophobic PS by utilizing metal-organic frameworks as nanocarriers.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Yongqiang You
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Fanyu Zeng
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Chunyan Liang
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Huanhuan Feng
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|