1
|
Electrocatalytic Production of Hydrogen using Nickel Complexes with Tridentate N3 Ligands. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
2
|
Lu X, Wang S, Qin JH. Isolating Fe-O 2 Intermediates in Dioxygen Activation by Iron Porphyrin Complexes. Molecules 2022; 27:4690. [PMID: 35897870 PMCID: PMC9332324 DOI: 10.3390/molecules27154690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Dioxygen (O2) is an environmentally benign and abundant oxidant whose utilization is of great interest in the design of bioinspired synthetic catalytic oxidation systems to reduce energy consumption. However, it is unfortunate that utilization of O2 is a significant challenge because of the thermodynamic stability of O2 in its triplet ground state. Nevertheless, nature is able to overcome the spin state barrier using enzymes, which contain transition metals with unpaired d-electrons facilitating the activation of O2 by metal coordination. This inspires bioinorganic chemists to synthesize biomimetic small-molecule iron porphyrin complexes to carry out the O2 activation, wherein Fe-O2 species have been implicated as the key reactive intermediates. In recent years, a number of Fe-O2 intermediates have been synthesized by activating O2 at iron centers supported on porphyrin ligands. In this review, we focus on a few examples of these advances with emphasis in each case on the particular design of iron porphyrin complexes and particular reaction environments to stabilize and isolate metal-O2 intermediates in dioxygen activation, which will provide clues to elucidate structures of reactive intermediates and mechanistic insights in biological processes.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China; (S.W.); (J.-H.Q.)
| | | | | |
Collapse
|
3
|
Zhao F, Zhou Z, Lu Y, Qiao J, Zhang X, Gong X, Liu S, Lin S, Wu X, Yi W. Chemo-, Regio-, and Stereoselective Assembly of Polysubstituted Furan-2(5 H)-ones Enabled by Rh(III)-Catalyzed Domino C–H Alkenylation/Directing Group Migration/Lactonization: A Combined Experimental and Computational Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yangbin Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jin Qiao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiaoning Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xin Gong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Siyu Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Shuang Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
4
|
Malik DD, Chandra A, Seo MS, Lee YM, Farquhar ER, Mebs S, Dau H, Ray K, Nam W. Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(ii) center. Dalton Trans 2021; 50:11889-11898. [PMID: 34373886 PMCID: PMC8499697 DOI: 10.1039/d1dt01996a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mononuclear nonheme cobalt(ii) complex, [(TMG3tren)CoII(OTf)](OTf) (1), activates dioxygen in the presence of hydrogen atom donor substrates, such as tetrahydrofuran and cyclohexene, resulting in the generation of a cobalt(ii)-alkylperoxide intermediate (2), which then converts to the previously reported cobalt(iv)-oxo complex, [(TMG3tren)CoIV(O)]2+-(Sc(OTf)3)n (3), in >90% yield upon addition of a redox-inactive metal ion, Sc(OTf)3. Intermediates 2 and 3 represent the cobalt analogues of the proposed iron(ii)-alkylperoxide precursor that converts to an iron(iv)-oxo intermediate via O-O bond heterolysis in pterin-dependent nonheme iron oxygenases. In reactivity studies, 2 shows an amphoteric reactivity in electrophilic and nucleophilic reactions, whereas 3 is an electrophilic oxidant. To the best of our knowledge, the present study reports the first example showing the generation of cobalt-oxygen intermediates by activating dioxygen at a cobalt(ii) center and the reactivities of the cobalt-oxygen intermediates in oxidation reaction.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kim Y, Kim J, Nguyen LK, Lee YM, Nam W, Kim SH. EPR spectroscopy elucidates the electronic structure of [FeV(O)(TAML)] complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00522g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete hyperfine tensor of 17O of the FeV-oxo moeity was probed by ENDOR spectroscopy. The EPR spectroscopic results reported here provide a conclusive experimental basis for elucidating the electronic structure of the FeV-oxo complex.
Collapse
Affiliation(s)
- Yujeong Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| | - Jin Kim
- Department of Chemistry
- Sunchon National University
- Suncheon 57922
- Rep. of Korea
| | - Linh K. Nguyen
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Rep. of Korea
| | - Sun Hee Kim
- Western Seoul Center
- Korea Basic Science Institute (KBSI)
- Seoul 03759
- Rep. of Korea
- Department of Chemistry and Nano Science
| |
Collapse
|
6
|
Lu X, Lee YM, Sankaralingam M, Fukuzumi S, Nam W. Catalytic Four-Electron Reduction of Dioxygen by Ferrocene Derivatives with a Nonheme Iron(III) TAML Complex. Inorg Chem 2020; 59:18010-18017. [PMID: 33300784 DOI: 10.1021/acs.inorgchem.0c02400] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mononuclear nonheme iron(III) complex with a tetraamido macrocyclic ligand (TAML), [(TAML)FeIII]- (1), is a selective precatalyst for four-electron reduction of dioxygen by ferrocene derivatives in the presence of acetic acid (CH3COOH) in acetone. This is the first work to show that a nonheme iron(III) complex catalyzes the four-electron reduction of O2 by one-electron reductants. An iron(V)-oxo complex, [(TAML)FeV(O)]- (2), was produced by oxygenation of 1 with O2 via the formation of triacetone triperoxide (TATP), acting as an autocatalyst that shortened the induction time for the generation of 2. Decamethylferrocene (Me10Fc) and octamethylferrocene (Me8Fc) reduced 2 to 1 by two electrons in the presence of CH3COOH to produce decamethylferrocenium cation (Me10Fc+) and octamethylferrocenium cation (Me8Fc+), respectively. Then, 1 was oxygenated by O2 to regenerate 2 via the formation of TATP. In the cases of ferrocene (Fc), bromoferrocene (BrFc) and 1,1'-dibromoferrocene (Br2Fc), initial electron transfer from ferrocene derivatives to 2 occurred; however, neither a second proton-coupled electron transfer from ferrocene derivatives to 2 nor a catalytic four-electron reduction of O2 occurred.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | | | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Faculty of Science and Engineering, Meijo University, Nagoya, Aichi 468-8502, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
7
|
Xue SS, Li XX, Lee YM, Seo MS, Kim Y, Yanagisawa S, Kubo M, Jeon YK, Kim WS, Sarangi R, Kim SH, Fukuzumi S, Nam W. Enhanced Redox Reactivity of a Nonheme Iron(V)-Oxo Complex Binding Proton. J Am Chem Soc 2020; 142:15305-15319. [PMID: 32786748 DOI: 10.1021/jacs.0c05108] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acid effects on the chemical properties of metal-oxygen intermediates have attracted much attention recently, such as the enhanced reactivity of high-valent metal(IV)-oxo species by binding proton(s) or Lewis acidic metal ion(s) in redox reactions. Herein, we report for the first time the proton effects of an iron(V)-oxo complex bearing a negatively charged tetraamido macrocyclic ligand (TAML) in oxygen atom transfer (OAT) and electron-transfer (ET) reactions. First, we synthesized and characterized a mononuclear nonheme Fe(V)-oxo TAML complex (1) and its protonated iron(V)-oxo complexes binding two and three protons, which are denoted as 2 and 3, respectively. The protons were found to bind to the TAML ligand of the Fe(V)-oxo species based on spectroscopic characterization, such as resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR) measurements, along with density functional theory (DFT) calculations. The two-protons binding constant of 1 to produce 2 and the third protonation constant of 2 to produce 3 were determined to be 8.0(7) × 108 M-2 and 10(1) M-1, respectively. The reactivities of the proton-bound iron(V)-oxo complexes were investigated in OAT and ET reactions, showing a dramatic increase in the rate of sulfoxidation of thioanisole derivatives, such as 107 times increase in reactivity when the oxidation of p-CN-thioanisole by 1 was performed in the presence of HOTf (i.e., 200 mM). The one-electron reduction potential of 2 (Ered vs SCE = 0.97 V) was significantly shifted to the positive direction, compared to that of 1 (Ered vs SCE = 0.33 V). Upon further addition of a proton to a solution of 2, a more positive shift of the Ered value was observed with a slope of 47 mV/log([HOTf]). The sulfoxidation of thioanisole derivatives by 2 was shown to proceed via ET from thioanisoles to 2 or direct OAT from 2 to thioanisoles, depending on the ET driving force.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sachiko Yanagisawa
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Young-Kyo Jeon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, California 94025, United States
| | - Sun Hee Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
8
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Monika, Ansari A. Mechanistic insights into the allylic oxidation of aliphatic compounds by tetraamido iron( v) species: A C–H vs. O–H bond activation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03095c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work is based on a deep insight into a comparative study of C–H vs. O–H bond activation of allylic compound by the high valent iron complex. Our theoretical findings can help to design catalysts with better efficiency for catalytic reactions.
Collapse
Affiliation(s)
- Monika
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| | - Azaj Ansari
- Department of Chemistry
- Central University of Haryana
- Mahendergarh-123031
- India
| |
Collapse
|
10
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
11
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Lee CM, Sankaralingam M, Chuo CH, Tseng TH, Chen PPY, Chiang MH, Li XX, Lee YM, Nam W. A Mn(iv)-peroxo complex in the reactions with proton donors. Dalton Trans 2019; 48:5203-5213. [PMID: 30941378 DOI: 10.1039/c9dt00649d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protons play an important role in promoting O-O or M-O bond cleavage of metal-peroxo complexes. Treatment of side-on O2-bound [PPN][MnIV(TMSPS3)(O2)] (1, PPN = bis(triphenylphosphine)iminium and TMSPS3H3 = 2,2',2''-trimercapto-3,3',3''-tris(trimethylsilyl)triphenylphosphine) with perchloric acid (HClO4) in the presence of PR3 (R = phenyl or p-tolyl) results in the formation of neutral five-coordinate MnIII(OPR3)(TMSPS3) complexes (R = phenyl, 2a; p-tolyl, 2b), which are confirmed by X-ray crystallography. Isotope labelling experiments demonstrate that the oxygen atom in the phosphine oxide product derives from the peroxo ligand of 1. Reactions of 1 with weak proton donors, such as phenylthiol, phenol, substituted phenol and methanol, are also investigated to explore the reactivity of the MnIV-peroxo complex, leading to the isolation of a series of five-coordinate [MnIII(L)(TMSPS3)]- complexes (L = phenylthiolate, phenolate or methoxide). Mechanistic aspects of the reactions of the MnIV-peroxo complex with proton donors are discussed as well.
Collapse
Affiliation(s)
- Chien-Ming Lee
- Department of Applied Science, National Taitung University, Jhihben Campus: 369, Sec. 2, University Rd., Taitung 950, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Harmalkar DS, Santosh G, Shetgaonkar SB, Sankaralingam M, Dhuri SN. A putative heme manganese(v)-oxo species in the C–H activation and epoxidation reactions in an aqueous buffer. NEW J CHEM 2019. [DOI: 10.1039/c9nj01381d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis and reactivity studies of manganese(v)-oxo species in the C–H activation of alkyl hydrocarbons and epoxidation of cyclohexene in aqueous conditions are investigated.
Collapse
Affiliation(s)
| | - G. Santosh
- School of Chemical Sciences
- Goa University
- Panaji
- India
- Divison of Chemistry
| | | | | | | |
Collapse
|
14
|
Lacy DC. Applications of the Marcus cross relation to inner sphere reduction of O 2: implications in small-molecule activation. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00828d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Marcus cross relation is demonstrated to be applicable to inner sphere electron transfer from iron to molecular oxygen by incorporation of the Fe(iii)–O2to Fe(iii) + superoxide BDFE inKeq. A few case-studies are provided as working examples.
Collapse
Affiliation(s)
- David C. Lacy
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
15
|
|