1
|
Cheng X, Liu B, Qiu Y, Liu K, Fang Z, Qi J, Ma Z, Sun T, Liu S. Enhanced microorganism attachment and flavin excretion in microbial fuel cells via an N,S-codoped carbon microflower anode. J Colloid Interface Sci 2023; 648:327-337. [PMID: 37301157 DOI: 10.1016/j.jcis.2023.05.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Commonly used dense arrays of nanomaterials on carbon cloth (CC) are not suitable to accommodate microorganisms in microbial fuel cells (MFCs) due to their unmatched size. To simultaneously enrich exoelectrogens and accelerate the extracellular electron transfer (EET) process, SnS2 nanosheets were selected as sacrificial templates to prepare binder-free N,S-codoped carbon microflowers (N,S-CMF@CC) by polymer coating and pyrolysis. N,S-CMF@CC showed a cumulative total charge of 125.70C/m2, approximately 2.11 times higher than that of CC, indicating its better electricity storage capacity. Moreover, the interface transfer resistance and diffusion coefficient in bioanodes were 42.68 Ω and 9.27 × 10-10 cm2/s, respectively, superior to CC (141.3 Ω and 1.06 × 10-11 cm2/s). Remarkably, N,S-codoped carbon microflowers excreted more flavin than CC, as confirmed by continuous fluorescence monitoring. Biofilm and 16S rRNA gene sequence analysis revealed that exoelectrogens were enriched, and nanoconduits were generated on the N,S-CMF@CC anode. In particular, flavin excretion was also promoted on our hierarchical electrode, effectively driving the EET process. MFCs equipped with the N,S-CMF@CC anode could deliver a power density of 2.50 W/m2, coulombic efficiency of 22.77 %, and chemical oxygen demand (COD) removal amount of 90.72 mg/L/d, higher than that of bare CC. These findings not only demonstrate that our anode is capable of solving the cell enrichment issue, but it may also increase EET rates by bound flavin with outer membrane c-type cytochromes (OMCs) to simultaneously boost the power generation and wastewater treatment performance of MFCs.
Collapse
Affiliation(s)
- Xusen Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040 PR China
| | - Bo Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 666 Changhui Road, Dantu New District, Zhenjiang City, Jiangsu Province, PR China
| | - Yunfeng Qiu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin 150080, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Ke Liu
- School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Zhuluni Fang
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China
| | - Jinteng Qi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040 PR China
| | - Zhuo Ma
- School of Life Science and Technology, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, PR China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Engineering Research Center of Forest Bio-Preparation, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040 PR China.
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, No.2 Yikuang Street, Nan Gang District, Harbin 150080, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
2
|
Ahmadpour T, Aber S, Ghasem Hosseini M. Visible-light enhanced azo dye degradation and power generation in a microbial photoelectrochemical cell using AgBr/ZnO composite photocathode. Bioelectrochemistry 2022; 146:108139. [DOI: 10.1016/j.bioelechem.2022.108139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
|
4
|
Xu QQ, Xia X, Zhu M, Xu LH, Zhang YX, Li SS. Cobalt encapsulated in bamboo-like N-doped carbon nanotubes for highly sensitive electroanalysis of Pb(II): enhancement based on adsorption and catalysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2147-2156. [PMID: 33881025 DOI: 10.1039/d0ay02330b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes (CNTs) are recognized as desirable candidates to fabricate electrochemical sensing interfaces owing to their high surface area and excellent electron conductivity. However, the poor catalytic properties of CNTs significantly hinder their further application in electrochemical detection. Herein, for the first time we combined defective CNTs with catalytically active cobalt nanoparticles (Co NPs) to give cobalt encapsulated in a bamboo-like N-doped carbon nanotube nanocomposite (Co/N-CNTs). The novel constructed Co/N-CNTs are used as a modifier on a bare glass carbon electrode for the electrochemical detection of Pb(ii). As a result, the positive effect of adsorption and catalysis on Co/N-CNT shows a significant improvement in the electroanalytical performance towards Pb(ii) with a sensitivity of 69.74 μA μM-1 and a limit of detection of 0.039 μM. Moreover, the stability and practical applications of Co/N-CNTs towards Pb(ii) in real water samples obtained from a mining subsidence area were also considered. This method shows great promise, achieving an outstanding electroanalysis efficiency with noble-metal-free nanocomposite sensors based on the combination of carbon and transition metals.
Collapse
Affiliation(s)
- Qian-Qian Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei 235000, P. R. China.
| | - Xu Xia
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei 235000, P. R. China.
| | - Min Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei 235000, P. R. China.
| | - Li-Hao Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei 235000, P. R. China.
| | - Yong-Xing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei 235000, P. R. China.
| | - Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Materials Science and Engineering, Huaibei Normal University, Huaibei 235000, P. R. China.
| |
Collapse
|
5
|
Wang L, Wu X, Su BSQ, Song R, Zhang JR, Zhu JJ. Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications. ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2021. [DOI: 10.1002/aesr.202100031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Xiaoge Wu
- Environment Science and Engineering College Yangzhou University Yangzhou 225009 China
| | - B. S. Qi‐wen Su
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Rongbin Song
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
6
|
Gu C, Hou T, Zhang S, Gai P, Li F. Light-driven ultrasensitive self-powered cytosensing of circulating tumor cells via integration of biofuel cells and a photoelectrochemical strategy. J Mater Chem B 2019; 7:2277-2283. [PMID: 32254676 DOI: 10.1039/c9tb00222g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, a light-driven, membrane-less and mediator-less self-powered cytosensing platform via integration of biofuel cells (BFCs) and a photoelectrochemical strategy was developed for ultrasensitive detection of circulating tumor cells (CTCs). To construct cytosensors, an elaborately designed SH-Sgc8c aptamer/AuNP/g-C3N4 photoelectrode was used as an alternative anode for glucose oxidation, avoiding the introduction of anodic enzymes. Initially, glucose could favorably reach the photoanode surface and be easily oxidized by the photogenerated holes, while the photogenerated electrons would transfer to the biocathode and achieve biocatalytic reduction of O2, leading to a high EOCV. However, in the presence of CTCs, they could preferentially interact with the Sgc8c aptamer via specific recognition, and then complexes with large steric hindrance were immobilized on the photoanode surface, which could greatly affect the electron transfer between glucose and the photoanode surface. In this case, the EOCV decreased sharply. Encouragingly, this self-powered cytosensor exhibited an ultrasensitive response to the target CTCs in a wide concentration range from 20 to 2 × 105 cells mL-1 with a low detection limit of 10 cells mL-1 (S/N = 3), being superior to those of the reported methods. Moreover, this as-proposed self-powered cytosensor integrated with a photoelectrochemical strategy possessed unique advantages of not requiring an external power source, being anodic enzyme-free, having a simple construction process, facile miniaturization, and high selectivity and sensitivity, providing a promising and powerful tool for fundamental biochemical research and clinical diagnosis.
Collapse
Affiliation(s)
- Chengcheng Gu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, People's Republic of China
| | | | | | | | | |
Collapse
|
7
|
Mukherjee P, Saravanan P. Perspective View on Materialistic, Mechanistic and Operating Challenges of Microbial Fuel Cell on Commercialisation and Their Way Ahead. ChemistrySelect 2019. [DOI: 10.1002/slct.201802694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Priya Mukherjee
- Environmental Nanotechnology LaboratoryDepartment of Environmental Science and EngineeringIndian Institute of Technology [ISM], Dhanbad Dhanbad- 826004 Jharkhand India
| | - Pichiah Saravanan
- Environmental Nanotechnology LaboratoryDepartment of Environmental Science and EngineeringIndian Institute of Technology [ISM], Dhanbad Dhanbad- 826004 Jharkhand India
| |
Collapse
|