1
|
Lin ZJ, Fang CY, Wang TSA. Natural and artificial siderophores: Iron-based applications and beyond. Curr Opin Chem Biol 2025; 87:102601. [PMID: 40412201 DOI: 10.1016/j.cbpa.2025.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/27/2025]
Abstract
Siderophores are iron chelators secreted by microorganisms to scavenge iron from the environment. Natural siderophores have gained remarkable importance because their conjugates can be applied as antibiotics and diagnostic imaging agents. By utilizing the iron uptake system of microorganisms, functional molecules such as antibiotics or imaging agents can be delivered into cells. Notably, artificial siderophores have also been developed to increase stability and broaden metal chelating diversity. Various strategies, including backbone fine-tuning, artificial chelation moieties, and direct metal swapping, can be employed. Therefore, artificial siderophores can bind biorelated metals or radioactive isotopes, expanding their biological and medical applications. The aim of this review is to introduce recent advances in natural and artificial siderophore applications and highlight future challenges in this area of research.
Collapse
Affiliation(s)
- Zih-Jheng Lin
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Cheng-Yu Fang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, ROC
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 106319, Taiwan, ROC.
| |
Collapse
|
2
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
3
|
Wang TSA, Chen PL, Chen YCS, Chiu YW, Lin ZJ, Kao CY, Hung HM. Evaluation of the Stereochemistry of Staphyloferrin A for Developing Staphylococcus-Specific Targeting Conjugates. Chembiochem 2024; 25:e202400480. [PMID: 38965052 DOI: 10.1002/cbic.202400480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Bacteria in the genus Staphylococcus are pathogenic and harmful to humans. Alarmingly, some Staphylococcus, such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) have spread worldwide and become notoriously resistant to antibiotics, threatening and concerning public health. Hence, the development of new Staphylococcus-targeting diagnostic and therapeutic agents is urgent. Here, we chose the S. aureus-secreted siderophore staphyloferrin A (SA) as a guiding unit. We developed a series of Staphyloferrin A conjugates (SA conjugates) and showed the specific targeting ability to Staphylococcus bacteria. Furthermore, among the structural factors we evaluated, the stereo-chemistry of the amino acid backbone of SA conjugates is essential to efficiently target Staphylococci. Finally, we demonstrated that fluorescent Staphyloferrin A probes (SA-FL probes) could specifically target Staphylococci in complex bacterial mixtures.
Collapse
Affiliation(s)
- Tsung-Shing Andrew Wang
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Pin-Lung Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yi-Chen Sarah Chen
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Yu-Wei Chiu
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Zih-Jheng Lin
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Chih-Yao Kao
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Hsuan-Min Hung
- Department of Chemistry & Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
4
|
Selective detection of Aeromonas spp. by a fluorescent probe based on the siderophore amonabactin. J Inorg Biochem 2022; 230:111743. [DOI: 10.1016/j.jinorgbio.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 11/19/2022]
|
5
|
Kim DY, Kim HJ. Function of Fimsbactin B as an Acinetobacter-Selective Antibiotic Delivery Vehicle. Org Lett 2021; 23:5256-5260. [PMID: 34133175 DOI: 10.1021/acs.orglett.1c01786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of fimsbactin B, a natural siderophore of Acinetobacter baumannii, to function as an antibiotic delivery vehicle was investigated by synthesizing three structurally diversified fimsbactin B-cefaclor conjugates. Their antimicrobial activities were Acinetobacter-selective and up to 128-fold more potent than that of cefaclor alone. This activity enhancement originated from the fimsbactin-B-dependent active uptake of cefaclor. Thus, fimsbactin-B-based antibiotic delivery can be an effective approach in combating antibiotic-resistant Acinetobacter infections.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry and Center for ProteoGenomics Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
6
|
Swayambhu G, Bruno M, Gulick AM, Pfeifer BA. Siderophore natural products as pharmaceutical agents. Curr Opin Biotechnol 2021; 69:242-251. [PMID: 33640597 DOI: 10.1016/j.copbio.2021.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022]
Abstract
Siderophore natural products are characterized by an ability to tightly chelate metals. The origins of such compounds are often pathogenic microbes utilizing siderophores as virulence factors during host infection. The mechanism for siderophore formation typically involves the activity of nonribosomal peptide synthetases producing compounds across functional group classifications that include catecholate, phenolate, hydroxamate, and mixed categories. Though siderophore production has been a hallmark of pathogenicity, the evolutionarily-optimized binding abilities of siderophores suggest the possibility of re-directing the compounds towards alternative beneficial applications. In this mini-review, we will first describe siderophore formation origins before discussing alternative applications as pharmaceutical products. In so doing, we will cover examples and applications that include reducing metal overload, targeted antibiotic delivery, cancer treatment, vaccine development, and diagnostics. Included in this analysis will be a discussion on the native production hosts of siderophores and prospects for improvement in compound access through the adoption of heterologous biosynthesis.
Collapse
Affiliation(s)
- Girish Swayambhu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Michael Bruno
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
7
|
Garzón-Posse F, Quevedo-Acosta Y, Mahecha-Mahecha C, Acosta-Guzmán P. Recent Progress in the Synthesis of Naturally Occurring Siderophores. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis; Bio and Organocatalysis; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Yovanny Quevedo-Acosta
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
- Institute of Chemistry; Bio and Organocatalysis Chemistry Department; State University of Campinas; Rua Monteiro Lobato 270 13083-862 Campinas Brazil
| | - Camilo Mahecha-Mahecha
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| | - Paola Acosta-Guzmán
- Laboratory of Organic Synthesis; Bio and Organocatalysis Chemistry Department; Universidad de los Andes; Cra 1 No. 18A-12 Q:305 111711 Bogotá Colombia
| |
Collapse
|
8
|
Chen PHC, Ho SY, Chen PL, Hung TC, Liang AJ, Kuo TF, Huang HC, Wang TSA. Selective Targeting of Vibrios by Fluorescent Siderophore-Based Probes. ACS Chem Biol 2017; 12:2720-2724. [PMID: 28991433 DOI: 10.1021/acschembio.7b00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Siderophores are small molecules used to specifically transport iron into bacteria via related receptors. By adapting siderophores and hijacking their pathways, we may discover an efficient and selective way to target microbes. Herein, we report the synthesis of a siderophore-fluorophore conjugate VF-FL derived from vibrioferrin (VF). Using flow cytometry and fluorescence microscopy, the probe selectively labeled vibrios, including V. parahaemolyticus, V. cholerae, and V. vulnificus, even in the presence of other species such as S. aureus and E. coli. The labeling is siderophore-related and both iron-limited conditions and the siderophore moiety are required. The competitive relationship between VF-FL and VF in vibrios implies an unreported VF-related transport mechanism in V. cholerae and V. vulnificus. These studies demonstrate that the siderophore scaffold provides a method to selectively target microbes expressing cognate receptors under iron-limited conditions.
Collapse
Affiliation(s)
- Peng-Hsun Chase Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Sheng-Yang Ho
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Pin-Lung Chen
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tzu-Chiao Hung
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - An-Jou Liang
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tang-Feng Kuo
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Hsiao-Chun Huang
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| | - Tsung-Shing Andrew Wang
- Department
of Chemistry, National Taiwan University, Taipei, 10617, Taiwan (Republic of China)
| |
Collapse
|