1
|
Ren Y, Li N, Liu S, Gao D, Li X, Luo Y, Meng Y, Ye F, Liu Y. Enantioselective Cascade Catalysis for the Construction of Tetrahydroquinolines. Org Lett 2024; 26:9448-9454. [PMID: 39475722 DOI: 10.1021/acs.orglett.4c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Secondary amines are widely used as robust catalysts for the enantioselective functionalization of aldehydes, yet they are rarely employed as Lewis bases or hydrogen-bonding catalysts for alkene activation. In this study, we present a decarboxylative [4 + 2] cycloaddition of vinyl benzoxazinanones with nitroolefins to construct tetrahydroquinolines through cascade catalysis. A single chiral morpholine catalyst sequentially functions as both a Lewis base and a hydrogen-bonding catalyst. These activation modes effectively drive the cascade process and control the stereochemistry.
Collapse
Affiliation(s)
- Yan Ren
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Ningyuan Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Song Liu
- Chongqing Key Laboratory for Resource Utilization of Heavy Metal Wastewater, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan District, Chongqing 402160, People's Republic of China
| | - Dan Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xiaoyu Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yong Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yule Meng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Fuli Ye
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| |
Collapse
|
2
|
Chao CBE, Pham QH, Richardson C, Pyne SG, Hyland CJT. Palladium-Catalyzed (3+2) and (4+2) Cycloaddition Reactions of Sulfamidate Imine-Derived Azadienes: Synthesis of Spirocyclic Pyrrolidines and Tetrahydroquinolines. J Org Chem 2024; 89:13744-13755. [PMID: 39206628 DOI: 10.1021/acs.joc.4c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diastereoselective Pd-catalyzed (3+2) and (4+2) cycloaddition reactions of sulfamidate imine-derived 1-azadienes with zwitterionic N-dipoles derived from 1-tosyl-2-vinylaziridine and 4-vinylbenzoxazinone have been developed. These reactions provide highly functionalized azaspirocycles featuring three contiguous stereocenters. The sulfonyl imine moiety of the cycloadducts can be fully reduced to access valuable β-amino alcohols.
Collapse
Affiliation(s)
- Chi Bong Eric Chao
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
3
|
Wang D, Tang T, Sun J, Han Y, Yan CG. Synthesis of Spiro[indoline-pyridine]-dicarboxylates and Substituted Alkylidene Oxindoles by Azomethine Ylides and MBH Carbonates of Isatins. Org Lett 2024; 26:4117-4121. [PMID: 38722200 DOI: 10.1021/acs.orglett.4c01236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have developed an efficient protocol for the synthesis of spiro[indoline-pyridine]dicarboxylates and substituted alkylidene oxindoles through [3 + 3] cycloaddition and Michael addition individually by azomethine ylides and various MBH carbonates of isatins. The selective generation of cyclic products and chain products was achieved by changing the substituents at the 3-position of the oxindoles. The features of this method include convenient catalysts, mild reaction conditions, and broad substrate scopes.
Collapse
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ting Tang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
4
|
Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53:1936-1983. [PMID: 38206332 DOI: 10.1039/d3cs00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This review provides an in-depth analysis of recent advances and strategies employed in the Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of nucleophilic prochiral heterocycles. The review is divided into sections each focused on a specific family of heterocycle, where optimisation data and reaction scope have been carefully analysed in order to bring forward specific reactivity and selectivity trends. The review eventually opens on how computer-based technologies could be used to predict an ideally matched catalytic system for any given substrate. This user-guide targets chemists from all horizons interested in running a Pd-AAA reaction for the preparation of highly enantioenriched heterocyclic compounds.
Collapse
Affiliation(s)
- François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Paul Clark
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Al Hannam
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
5
|
Tang Y, Zhang R, Dong Y, Yu S, Wu Y, Xiao Y, Guo H. 4-Vinylbenzodioxinones as a new type of precursor for palladium-catalyzed (4+3) cycloaddition of azomethine imines. Chem Commun (Camb) 2024; 60:1436-1439. [PMID: 38206119 DOI: 10.1039/d3cc06012h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, benzo-fused cyclic carbonates were designed and synthesized as a new type of precursor of π-allylpalladium zwitterionic intermediates, and were applied in Pd-catalyzed diastereo- and enantioselective (4+3) cycloaddition with C,N-cyclic azomethine imines, leading to various biologically important 1,3,4-benzoxadiazepine derivatives in 43-99% yields with 6 : 1 to >20 : 1 dr and up to 95% ee.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Rulei Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Songcheng Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Huang W, Yang J, Gao K, Wang Z, Huang G, Yao W, Yang J. Construction of Enantioenriched Quaternary C-Cl Oxindoles through Palladium-Catalyzed Asymmetric Allylic Substitution with Chloroenolates. J Org Chem 2023; 88:15298-15310. [PMID: 37831540 DOI: 10.1021/acs.joc.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A palladium-catalyzed asymmetric chloroenolate allylation with vinyl benzoxazinanones under mild reaction conditions has been developed, affording a series of optically active 3,3-disubstituted oxindoles exhibiting a chloro-group and a linear aryl amino side chain in good yields with up to 96% ee. Versatile functional group tolerance on the benzene ring has been demonstrated, and the utility of this method was probed by a scale-up synthesis and highlighted by product derivatizations.
Collapse
Affiliation(s)
- Wen Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jingjie Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
7
|
Guo M, Zhang P, Li EQ. Recent Advances in Palladium-Catalyzed [4 + n] Cycloaddition of Lactones, Benzoxazinanones, Allylic Carbonates, and Vinyloxetanes. Top Curr Chem (Cham) 2023; 381:33. [PMID: 37921912 DOI: 10.1007/s41061-023-00442-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2023]
Abstract
Palladium-catalyzed allylation cyclization reaction has recently emerged as an efficient and powerful synthetic platform for the construction of diverse and valuable carbo- and heterocycles. Thus the development of new allylic motifs for achieving this type of transformations in high reactivity and selectivity is of great importance. Generally, these substrates have been utilized as 1,3-, 1,4-, 1,5-, 1,6-dipoles in many reactions, which are applied to prepare highly functionalized products with complete control of chemo-, regio-, diastereo-, and enantioselectivity. In this review, we focus our attention on the development of palladium-catalyzed [4 + n] cycloaddition of allylic motifs and describe a comprehensive and impressive advances in this area. Meanwhile, the related mechanism and the application of these annulation strategies in natural product total synthesis will be highlighted in detail.
Collapse
Affiliation(s)
- Mengyan Guo
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Panke Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Er-Qing Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
8
|
Tague AJ, Hoang Pham Q, Richardson C, Pyne SG, Hyland CJT. Diastereoselective Pd-catalyzed Decarboxylative (4+2) Cycloaddition Reactions of 4-Vinylbenzoxazinanones and 2-Nitro-1,3-enynes. Chemistry 2023:e202302406. [PMID: 37718289 DOI: 10.1002/chem.202302406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
A formal palladium-catalyzed decarboxylative (4+2) cycloaddition reaction between 4-vinylbenzoxazinanones and 2-nitro-1,3-enynes has been developed to produce highly valuable, densely functionalized tetrahydroquinolines in moderate to excellent yields with high diastereoselectivity under mild reaction conditions. The optimised protocol tolerates a range of substituted 2-nitro-1,3-enynes, which represent an under-utilized class of dipolarophile for transition-metal catalyzed cycloadditions. The employed reaction methodology facilitates efficient cycloaddition with both N-H- and N-Ts-4-vinylbenzoxazinanone dipole precursors. The stereochemistry of the major and minor diastereomeric (4+2) cycloadducts was determined by single crystal X-ray analyses. A mechanistic rationale for the high intrinsic diastereoselectivity and preliminary enantioselective experiments are also presented. The tetrahydroquinoline cycloadduct products feature numerous pendant functionalities, including a vinyl handle, an internal alkyne motif and a nitro functionality (which functions as a latent C-3 nitrogen substituent) for further synthetic manipulations.
Collapse
Affiliation(s)
- Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
9
|
Li K, Zhen S, Wang W, Du J, Yu S, Wu Y, Guo H. Fungicide-inspired precursors of π-allylpalladium intermediates for palladium-catalyzed decarboxylative cycloadditions. Chem Sci 2023; 14:3024-3029. [PMID: 36937593 PMCID: PMC10016346 DOI: 10.1039/d3sc00112a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Inspired by a fungicide, we designed 5-vinyloxazolidine-2,4-diones as new precursors of π-allylpalladium zwitterionic intermediates and developed palladium-catalyzed asymmetric (5 + 3) cycloaddition with azomethine imines and (3 + 2) cycloaddition with 1,1-dicyanoalkenes. Both reactions proceeded smoothly under mild reaction conditions to produce various chiral heterocyclic compounds in high yields with excellent enantioselectivities. These results revealed that 5-vinyloxazolidine-2,4-diones were a type of suitable precursor for palladium catalysis and will find extensive applications in Pd-catalyzed reactions such as cycloaddition and allylic alkylation.
Collapse
Affiliation(s)
- Kuan Li
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Shuo Zhen
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Wang Wang
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Juan Du
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| | - Songcheng Yu
- College of Public Health, Zhengzhou University Zhengzhou 450001 China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University Zhengzhou 450001 China
| | - Hongchao Guo
- Department of Chemistry, Innovation Center of Pesticide Research, China Agricultural University Beijing 100193 China
| |
Collapse
|
10
|
Remote stereocontrol in the (4 + 2) cycloadditions of 1,7-zwitterions: Asymmetric synthesis of multifunctionalized tetrahydroquinoline derivatives. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Li C, Xiang X, Zhang X, He ZL, Gu SX, Dong XQ. Iridium-Catalyzed Intramolecular Asymmetric Allylation of Vinyl Benzoxazinones for the Synthesis of Chiral 4 H-3,1-Benzoxazines via Kinetic Resolution. Org Lett 2023; 25:1172-1177. [PMID: 36779869 DOI: 10.1021/acs.orglett.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Chiral benzoxazinones and 4H-3,1-benzoxazines as important motifs are widely found in abundant pharmaceuticals and biological molecules. We herein successfully developed the first kinetic resolution (KR) process of racemic benzoxazinones through Ir-catalyzed asymmetric intramolecular allylation, furnishing a wide range of chiral benzoxazinones and 4H-3,1-benzoxazines with excellent results via outstanding KR performances (with the s factor up to 170). This protocol exhibited broad substrate scope generality and good functional group tolerance, and the chiral 4H-3,1-benzoxazine products could be readily transformed to other useful optically active heterocycles.
Collapse
Affiliation(s)
- Chenzong Li
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xun Xiang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China.,School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xianghe Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Zhao-Lin He
- School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Shuang-Xi Gu
- School of Chemical Engineering & Pharmacy, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
12
|
Vopálenská A, Dočekal V, Petrželová S, Císařová I, Veselý J. Access to Spirooxindole-Fused Cyclopentanes via a Stereoselective Organocascade Reaction Using Bifunctional Catalysis. J Org Chem 2023. [PMID: 36705518 DOI: 10.1021/acs.joc.2c02478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study reports an asymmetric organocascade reaction of oxindole-derived alkenes with 3-bromo-1-nitropropane efficiently catalyzed by the bifunctional catalyst. Spirooxindole-fused cyclopentanes were produced in moderate-to-good isolated yields (15-69%) with excellent stereochemical outcomes. The synthetic utility of the protocol was exemplified on a set of additional transformations of the corresponding spirooxindole compounds.
Collapse
Affiliation(s)
- Andrea Vopálenská
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Simona Petrželová
- Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| |
Collapse
|
13
|
Chen BH, Liu SJ, Zhao Q, Hou Q, Yuan JL, Zhan G, Yang QQ, Huang W. Palladium-catalyzed asymmetric [4+2] annulation of vinyl benzoxazinanones with pyrazolone 4,5-diones to access spirobenzoxazine frameworks. Chem Commun (Camb) 2023; 59:1233-1236. [PMID: 36632696 DOI: 10.1039/d2cc06621a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, a palladium-catalyzed general synthetic strategy to access an attractive and decorated set of chiral spiro derivatives of benzoxazine compounds is unveiled utilizing vinyl benzoxazinanones reacted with pyrazolone 4,5-diones, which extends the application of vinyl benzoxazinanones with ketones. This asymmetric catalytic [4+2] cycloaddition reaction demonstrates a broad substrate scope with functional group tolerance in yields of up to 76% and up to 96% ee. A facile scale-up and straightforward conversion to diversely substituted products verify the synthetic utility of this method.
Collapse
Affiliation(s)
- Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Qiumeng Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Jia-Li Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| |
Collapse
|
14
|
Xiong W, Shi B, Jiang X, Lu L, Xiao W. Ligand-Switched Pd-Catalyzed Divergent Transformations of Vinyl Cyclic Carbamates and Isocyanates. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202205038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Rapid assembly of 1,3-indanedione-based spirocyclic tetrahydroquinolines for inducing human lung cancer cell apoptosis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Li TH, Niu C, Du DM. Enantioselective synthesis of isoxazole-containing spirooxindole tetrahydroquinolines via squaramide-catalysed cascade reactions. Org Biomol Chem 2022; 20:5582-5588. [PMID: 35796306 DOI: 10.1039/d2ob00864e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A class of o-sulfonylaminostyryl isoxazole synthons were designed and demonstrated to be useful building blocks in asymmetric cascade aza-Michael/Michael reaction with 3-olefinic oxindoles. This squaramide-catalysed cascade reaction afforded structurally complex isoxazole-containing spirooxindole tetrahydroquinolines bearing three contiguous stereocenters in good to excellent yields (up to 99%) with high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to 88% ee). Moreover, the gram-scale synthesis and synthetic transformations were also demonstrated.
Collapse
Affiliation(s)
- Tong-Hao Li
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| | - Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering (Ministry of Industry and Information Technology), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No.5 Zhongguancun South Street, Beijing 100081, People's Republic of China..
| |
Collapse
|
17
|
Wang K, Lin X, Li Q, Liu Y, Li C. The synthesis of tetracyclic coumarins via decarboxylative asymmetric [4+2] cycloadditions enabled by Pd(0)/Cu(I) synergistic catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64051-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Chen X, Wang T, Lu Z, Li P. Organocatalytic Enantioselective Formal (4 + 2)-Cycloadditions of Phosphine-Containing Dipoles with Isocyanates. Org Lett 2022; 24:3102-3106. [PMID: 35441518 DOI: 10.1021/acs.orglett.2c01154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphine-catalyzed enantioselective formal (4 + 2)-cycloadditions of 2-(4H-benzo[d][1,3]oxazin-4-yl)acrylates with isocyanates have been developed for the first time. The initial SN2' attack of the chiral phosphine organocatalyst on 2-(4H-benzo[d][1,3]oxazin-4-yl)acrylates generated the key phosphine-containing dipolar intermediates, and the subsequent formal cycloaddition with isocyanates furnished a broad scope of 3,4-dihydroquinazolin-2-ones in 60-84% yields with 61-92% ee.
Collapse
Affiliation(s)
- Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhongyue Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
19
|
You Y, Li Q, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Advances in Palladium‐Catalyzed Decarboxylative Cycloadditions of Cyclic Carbonates, Carbamates and Lactones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yong You
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Qun Li
- Chengdu University of Technology College of Materials and Chemistry & Chmical Engineering Chengdu CHINA
| | - Yan-Ping Zhang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Jian-Qiang Zhao
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Zhen-Hua Wang
- Chengdu University Innovation Research Center of Chiral Drugs, Institute for Advanced Study 610106 Chengdu CHINA
| | - Wei-Cheng Yuan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences National Engineering Research Center of Chiral Drugs Renmin South Road Block 4, No. 9 610041 Chengdu CHINA
| |
Collapse
|
20
|
Zhang J, Chen Y, Wang Q, Shen J, Liu Y, Deng W. Transition Metal-Catalyzed Asymmetric Cyclizations Involving Allyl or Propargyl Heteroatom-Dipole Precursors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Xiong W, Jiang X, Zhang MM, Xiao WJ, Lu LQ. A cooperative Pd/Co catalysis system for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones with N-acylpyrazoles. Chem Commun (Camb) 2021; 57:13566-13569. [PMID: 34843613 DOI: 10.1039/d1cc05952a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-catalyzed cycloaddition has been established as a powerful tool for heterocycle synthesis. Despite impressive advances, the exploitation of new catalysis strategies and systems is still highly significant to enrich the heterocycle family. Herein, we disclosed a cooperative catalysis system merging an achiral Pd catalyst and a chiral Co catalyst for the asymmetric [4+2] cycloaddition between vinyl benzoxazinones and N-acylpyrazoles. Chiral tetrahydroquinolines bearing two contiguous, unusual cis-configured stereocenters were produced in high yields and enantio- and diastereoselectivities. The pyrazole directing group can be easily converted into many other functional groups, thus demonstrating the flexibility of the present methodology.
Collapse
Affiliation(s)
- Wei Xiong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
22
|
Saeed R, Sakla AP, Shankaraiah N. An update on the progress of cycloaddition reactions of 3-methyleneindolinones in the past decade: versatile approaches to spirooxindoles. Org Biomol Chem 2021; 19:7768-7791. [PMID: 34549231 DOI: 10.1039/d1ob01176f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cycloaddition reactions are of great interest due to their potential and rapid construction of optically enriched spiro-cyclic products. 3-Methyleneindolinones have been proven to be a valuable precursor in cycloaddition reactions for the construction of diverse 3,3'-spirocyclic oxindoles. Their versatile reactivity has provided a new forum for the development of a variety of building blocks and synthetic compounds, including bioactive molecules. Herein, significant accomplishments in the cycloaddition reactions of 3-methyleneindolinones for the synthesis of spirooxindoles have been summarised and elaborated. The review is outlined according to the type of cycloaddition such as [2 + 1], [2 + 2], [3 + 2], [4 + 2] and [5 + 2] cycloaddition reactions.
Collapse
Affiliation(s)
- Ruqaiya Saeed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Akash P Sakla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
23
|
Tian Y, Duan M, Liu J, Fu S, Dong K, Yue H, Hou Y, Zhao Y. Recent Advances in Metal‐Catalyzed Decarboxylative Reactions of Vinyl Benzoxazinanones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ye Tian
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Meibo Duan
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Jialu Liu
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Siyu Fu
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Kuan Dong
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Hao Yue
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yunlei Hou
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 People's Republic of China
| |
Collapse
|
24
|
Wang K, Wang B, Liu X, Fan H, Liu Y, Li C. Palladium-catalyzed enantioselective linear allylic alkylation of vinyl benzoxazinanones: An inner-sphere mechanism. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63751-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
26
|
Fairuz Binte Sheikh Ismail SN, Yang B, Zhao Y. Access to 5,6-Spirocycles Bearing Three Contiguous Stereocenters via Pd-Catalyzed Stereoselective [4 + 2] Cycloaddition of Azadienes. Org Lett 2021; 23:2884-2889. [PMID: 33769066 DOI: 10.1021/acs.orglett.1c00505] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present herein a highly diastereo- and enantioselective Pd-catalyzed [4 + 2] cycloaddition of benzofuran-derived azadienes with vinyl benzoxazinanones, which represents a rare highly stereoselective cycloaddition of this class of fused azadienes as a two-atom synthon. The use of a phosphoramidite ligand bearing a chiral secondary amine with a simple biphenyl backbone proved to be the key to construct the novel spirocyclic tetrahydroquinoline scaffold containing three contiguous stereocenters as a single diastereomer in high enantioselectivity.
Collapse
Affiliation(s)
| | - Binmiao Yang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore
| | - Yu Zhao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
27
|
Gao Y, Zhang X, Zhang X, Miao Z. Catalytic Asymmetric Construction of a 1,2,4-Benzotriazepine Skeleton via Diastereo- and Enantioselective Decarboxylative [4 + 3] Cyclization. Org Lett 2021; 23:2415-2420. [PMID: 33709719 DOI: 10.1021/acs.orglett.1c00073] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have developed a protocol for palladium-catalyzed decarboxylative [4 + 3] cycloaddition reactions between 4-vinyl benzoxazinanones and azomethine imines to generate moderate to good yields of structurally diverse 1,2,4-benzotriazepines bearing two stereogenic centers with good to excellent stereoselectivities. This protocol not only addresses the challenge of asymmetrically constructing compounds with a 1,2,4-benzotriazepine skeleton but also demonstrates the utility of decarboxylative cycloadditions for the synthesis of enantioenriched polycyclic compounds.
Collapse
Affiliation(s)
- Yanfeng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xuange Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
28
|
Lalitha A, Vinoth N, Vadivel P. Expedient Synthesis and Antibacterial Activity of Tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile Derivatives Using Piperidine as Catalyst. Synlett 2021. [DOI: 10.1055/s-0040-1706682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractA convenient synthesis of 2′-amino-7′,7′-dimethyl-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile derivatives has been designed using different substituted isatins, various 5,5-dimethyl-3-(2-phenylhydrazinyl)cyclohex-2-enones (arylhydrazones of dimedone) and malononitrile in ethanol with piperidine as catalyst at room temperature. The structures of the synthesized compounds have been elucidated by various spectroscopic techniques. The selected compounds have also been evaluated for their antibacterial activities against human pathogenic bacteria.
Collapse
|
29
|
Convenient construction of spiro[indoline-3,5'-pyrrolo[3,4-c]carbazole] and spiro[indene-2,5'-pyrrolo[3,4-c]carbazole] via acid-catalyzed Diels-Alder reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Li QZ, Jia ZQ, Chen L, Zhang X, Leng HJ, Zeng R, Liu YQ, Zou WL, Li JL. Construction of a Benzo[ b]azepine Skeleton through Decarboxylative Ylide [6+1] Annulations with Modified Vinyl Benzoxazinanones. Org Lett 2021; 23:814-818. [PMID: 33501832 DOI: 10.1021/acs.orglett.0c04041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A Lewis acid-promoted [6+1] annulation between sulfur ylides and modified vinyl benzoxazinanones was described. In this reaction, the newly designed vinyl benzoxazinanones could serve as a novel six-atom synthon, and the key to success is the installation of an electron-withdrawing group on the alkene moiety of the benzoxazinanones. A broad range of substrates are compatible with this mild reaction system, thereby providing a facile and practical approach for constructing a benzo[b]azepine skeleton.
Collapse
Affiliation(s)
- Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Zhi-Qiang Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Lin Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Hai-Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Rong Zeng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Yan-Qing Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Wen-Lin Zou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, China
| |
Collapse
|
31
|
Guo JM, Fan XZ, Wu HH, Tang Z, Bi XF, Zhang H, Cai LY, Zhao HW, Zhong QD. Asymmetric Synthesis of Spiropyrazolones via Chiral Pd(0)/Ligand Complex-Catalyzed Formal [4+2] Cycloaddition of Vinyl Benzoxazinanones with Alkylidene Pyrazolones. J Org Chem 2021; 86:1712-1720. [PMID: 33378188 DOI: 10.1021/acs.joc.0c02524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the presence of the chiral Pd(0)/ligand complex, vinyl benzoxazinanones underwent the [4+2] cycloaddition with alkylidene pyrazolones smoothly and delivered spiropyrazolones in reasonable yields, diastereoselectivities, and eneantioselectivities (up to >99% yield, >99:1 dr and 99% ee). The absolute configuration of the obtained spiropyrazolones was unambiguously characterized with the use of X-ray single-crystal structure analysis. Moreover, the reaction mechanism was assumed to interpret the formation of the target compounds.
Collapse
Affiliation(s)
- Jia-Ming Guo
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiao-Zu Fan
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hui-Hui Wu
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhe Tang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xiao-Fan Bi
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Heng Zhang
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Lu-Yu Cai
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hong-Wu Zhao
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Qi-Di Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| |
Collapse
|
32
|
Kawai K, Uno H, Fujimoto D, Shibata N. Transition‐Metal Free Catalytic Synthesis of Trifluoromethyl Indolines by [4+1] Cycloaddition of Trifluoromethyl Benzoxazinones with Sulfur Ylides. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202000217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koki Kawai
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
| | - Hiroto Uno
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
| | - Daichi Fujimoto
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
- Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 Japan
- Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 688 Yingbin Avenue Jinhua 321004 P. R. China
| |
Collapse
|
33
|
de la Cruz-Sánchez P, Pàmies O. Metal-π-allyl mediated asymmetric cycloaddition reactions. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Wang Y, Cobo AA, Franz AK. Recent advances in organocatalytic asymmetric multicomponent cascade reactions for enantioselective synthesis of spirooxindoles. Org Chem Front 2021. [DOI: 10.1039/d1qo00220a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalytic asymmetric MCCRs for enantioselective synthesis of spirooxindoles by using chiral phosphoric acids, amines, bifunctional thiourea/squaramides and metal-based reagents as catalysts.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education
- Yunnan Normal University
- Kunming 650092
- P. R. China
| | - Angel A. Cobo
- Department of Chemistry
- University of California
- Davis
- USA
| | | |
Collapse
|
35
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
36
|
Hang Q, Liu S, Yu L, Sun T, Zhang Y, Mei G, Shi F. Design and Application of
Indole‐Based
Allylic Donors for
Pd‐Catalyzed
Decarboxylative Allylation Reactions
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qing‐Qing Hang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Si‐Jia Liu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Ting‐Ting Sun
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Yu‐Chen Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Guang‐Jian Mei
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
37
|
Wang J, Zhao L, Rong Q, Lv C, Lu Y, Pan X, Zhao L, Hu L. Asymmetric Synthesis of 3,3'-Tetrahydrofuryl Spirooxindoles via Palladium-Catalyzed [3+2] Cycloadditions of Methyleneindolinones with Vinylethylene Carbonates. Org Lett 2020; 22:5833-5838. [PMID: 32790422 DOI: 10.1021/acs.orglett.0c01920] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed asymmetric [3+2] cycloaddition reaction of methyleneindolinones with vinylethylene carbonates has been successfully developed, which provides a highly efficient method for the synthesis of structurally diverse 3,3'-tetrahydrofuryl spirooxindoles in high yields (≤99%) with excellent stereoselectivities (>20:1 dr, ≤99% ee). Furthermore, this methodology shows a wide substrate scope and high utility in diversity-oriented synthesis.
Collapse
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lei Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Quanjin Rong
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Cheng Lv
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yu Lu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiang Pan
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
38
|
Du J, Hua YD, Jiang YJ, Huang S, Chen D, Ding CH, Hou XL. Palladium-Catalyzed Asymmetric Decarboxylative [4+2] Dipolar Cycloaddition of 4-Vinyl-1,3-dioxan-2-ones with α,β-Disubstituted Nitroalkenes Enabled by a Benzylic Substituted P,N-Ligand. Org Lett 2020; 22:5375-5379. [PMID: 32589436 DOI: 10.1021/acs.orglett.0c01638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Pd-catalyzed asymmetric [4+2] cycloaddition reaction of an aliphatic 1,4-dipole with singly activated electron-deficient alkenes is realized for the first time, enabled by using a newly developed benzylic substituted P,N-ligand, affording tetrahydropyrans having three continuous chiral centers in high yields with high diastereo- and enantioselectivities. The rational transition states of the reaction as well as the role of the benzylic chiral center are proposed.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuan-Da Hua
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yang-Jie Jiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuai Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Di Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
39
|
Wang J, Zhao L, Zhao L, Pan X, Lv C, Zhi Y, Wang A, Zhao K, Hu L. Diastereoselective Synthesis of Tetrahydroquinolines Bearing Oxindole Scaffolds via Annulation of
in Situ
Generated
p
‐Quinone Methides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junwei Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Lei Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Lin Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Xiang Pan
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Cheng Lv
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Ying Zhi
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical Science Jinan 250062 People's Republic of China
| | - Ai Wang
- Institute of Molecular ScienceShanxi University Taiyuan 030006 People's Republic of China
| | - Kun Zhao
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of PharmacyNanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| |
Collapse
|
40
|
Zhang CB, Dou PH, Zhao JQ, Yuan WC. Organocatalyzed asymmetric cascade Mannich/cyclization of 3-isothiocyanato oxindoles with cyclic ketimines for the synthesis of polycyclic spiro-thioimidazolidine-oxindoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Zhang M, Wang JX, Chang SQ, Liu XL, Zuo X, Zhou Y. Highly efficient enantioselective synthesis of bispiro[benzofuran-oxindole/benzofuran-chromanone]s through organocatalytic inter-/intramolecular Michael cycloaddition. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Ray Choudhury A, Mukherjee S. Deconjugated butenolide: a versatile building block for asymmetric catalysis. Chem Soc Rev 2020; 49:6755-6788. [PMID: 32785345 DOI: 10.1039/c9cs00346k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Deconjugated butenolides have emerged as a popular synthon for the enantioselective synthesis of γ-lactones. This review provides a comprehensive overview on the catalytic asymmetric reactions of deconjugated butenolides reported till date.
Collapse
Affiliation(s)
| | - Santanu Mukherjee
- Department of Organic Chemistry
- Indian Institute of Science
- Bangalore 560 012
- India
| |
Collapse
|
43
|
Zhan SC, Sun J, Liu RZ, Yan CG. Diastereoselective construction of carbazole-based spirooxindoles via the Levy three-component reaction. Org Biomol Chem 2020; 18:163-168. [DOI: 10.1039/c9ob02013f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CuSO4 catalyzed three-component reaction of indole-2-acetate, aromatic aldehydes and 3-methyleneoxindoles in toluene at 130 °C afforded polysubstituted spiro[carbazole-3,3′-indolines] in good yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Ru-Zhang Liu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
44
|
Lei CW, Zhang CB, Wang ZH, Xie KX, Zhao JQ, Zhou MQ, Zhang XM, Xu XY, Yuan WC. Cyclocondensation of coumarin-3-thioformates with 3-hydroxyoxindoles and 3-aminooxindoles for the synthesis of spiro-fused pentaheterocyclic compounds. Org Chem Front 2020. [DOI: 10.1039/c9qo01039d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A range of spiro-fused pentaheterocyclic compounds including spiro-butyrolactoneoxindole[3,4-c]coumarins and spiro-butyrolactamoxindole[3,4-c]coumarins were smoothly obtained via tandem Michael addition-lactonization/lactamization process.
Collapse
Affiliation(s)
- Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Chuan-Bao Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
45
|
Shi H, Wang L, Li SS, Liu Y, Xu L. Divergent syntheses of spirooxindoles from oxindole-embedded four-membered synthon via cycloaddition reactions. Org Chem Front 2020. [DOI: 10.1039/d0qo00038h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The construction of five and six membered heterocycle fused spirooxindoles was achieved via the [4 + 1] and formal [4 + 2] cycloadditions between our rationally designed four-membered synthons and pyridinium methylides and α-bromoacetophenones, respectively.
Collapse
Affiliation(s)
- Hongjin Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Yongjun Liu
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| |
Collapse
|
46
|
Khan I, Shah BH, Zhao C, Xu F, Zhang YJ. Pd-Catalyzed Asymmetric Allylic Cycloaddition of N-Containing Allylic Carbonates with Isocyanates. Org Lett 2019; 21:9452-9456. [DOI: 10.1021/acs.orglett.9b03662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ijaz Khan
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Babar Hussain Shah
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Can Zhao
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| | - Feng Xu
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, 6600 Nanfeng Highway, Shanghai 201400, P.R. China
| | - Yong Jian Zhang
- School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P.R. China
| |
Collapse
|
47
|
Sun M, Wu H, Xia X, Chen W, Wang Z, Yang J. Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones. J Org Chem 2019; 84:12835-12847. [DOI: 10.1021/acs.joc.9b01372] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Xiangyu Xia
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Weida Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| |
Collapse
|
48
|
Noreen S, Zahoor AF, Ahmad S, Shahzadi I, Irfan A, Faiz S. Novel Chiral Ligands for Palladium-catalyzed Asymmetric Allylic Alkylation/ Asymmetric Tsuji-Trost Reaction: A Review. CURR ORG CHEM 2019; 23:1168-1213. [DOI: 10.2174/1385272823666190624145039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/26/2022]
Abstract
Background:
Asymmetric catalysis holds a prestigious role in organic syntheses since a long
time and chiral inductors such as ligands have been used to achieve the utmost desired results
at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial
role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed
Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic
potential. The use of chiral ligands as asymmetric inductors has widened the scope of
Tsuji-Trost allylic alkylation reactions.
Conclusion:
Therefore, in this review article, a variety of chiral inductors or ligands have been focused
for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this
regard, recently reported literature (2013-2017) has been described. The use of ligands
causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds
of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.
Collapse
Affiliation(s)
- Samar Noreen
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad-38000, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| | - Sadia Faiz
- Department of Chemistry, Government College University Faisalabad, Faisalabad-38000, Pakistan
| |
Collapse
|
49
|
Wang Y, Xiong Q, Lu L, Zhang Q, Wang Y, Lan Y, Xiao W. Inverse‐Electron‐Demand Palladium‐Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,S‐Ligand and Hydrogen Bonding. Angew Chem Int Ed Engl 2019; 58:11013-11017. [DOI: 10.1002/anie.201905993] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Ni Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qin Xiong
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Liang‐Qiu Lu
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Qun‐Liang Zhang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Ying Wang
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
| | - Yu Lan
- College of Chemistry and Molecular EngineeringZhengzhou University Zhengzhou 450001 China
| | - Wen‐Jing Xiao
- CCNU-uOttawa Joint Research CentreKey Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal University 152 Luoyu Road Wuhan Hubei 430079 China
- Key Lab of Functional Molecular Engineering of Guangdong ProvinceSouth China University of Technology Guangdong 510006 China
| |
Collapse
|
50
|
Suo JJ, Du J, Jiang YJ, Chen D, Ding CH, Hou XL. Diastereo- and enantioselective palladium-catalyzed dearomative [4 + 2] cycloaddition of 3-nitroindoles. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|