1
|
Sohail M, Kobayashi K, Tomoda H, Ohshiro T, Tanaka F. Catalytic Enantioconvergent Alkylation Reactions That Construct Chiral Quaternary Carbon Centers and Tune C(sp 3)-C(sp 2) Bond Rotation. Chemistry 2025; 31:e202500140. [PMID: 39960741 DOI: 10.1002/chem.202500140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
In molecules with central chiral centers functionalized with aryl groups, the rotation of the single bond between the aryl group and the central chiral center may be hindered. Enantioconvergent alkylation reactions of racemic diastereomers to construct all-carbon quaternary stereocenters resulting in easing of the rotation around the axes are described. We demonstrated that the rotation of the bond between a central chiral carbon center and a dihydrobenzofuranone can be tuned by selection of either a tertiary carbon bearing a hydrogen or a quaternary carbon at the central chiral center. The products have the benefits of a central chiral center and a flexibly rotatable bond, which can facilitate interactions with other molecules.
Collapse
Affiliation(s)
- Muhammad Sohail
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Keisuke Kobayashi
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Tomoda
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Taichi Ohshiro
- Microbial Chemistry and Medicinal Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
2
|
Li E, Liao X, Guo F, Huang Y, Chen J. N-Heterocyclic Carbene-Catalyzed Asymmetric S N2 Alkylation via Noncovalent Activation. Org Lett 2024; 26:7479-7483. [PMID: 39092835 DOI: 10.1021/acs.orglett.4c02082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The field of asymmetric catalysis has been developed by exploring noncovalent interactions, particularly within N-heterocyclic carbene-mediated processes. Despite challenges due to the limited number of compatible electrophiles (predominantly π-acceptors), this study introduces the first asymmetric α-alkylation of 3-aryl oxindoles using Csp3 electrophiles. The innovative protocol integrates diverse oxindoles and alkyl, allyl, and propargyl electrophiles, achieving high yields and enantioselectivities. Preliminary mechanistic explorations support a noncovalent catalytic mechanism, enhancing the tool kit for constructing complex chiral molecules with potential applications.
Collapse
Affiliation(s)
- En Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Xiaoyun Liao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Fangfang Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
3
|
Zhang XY, Shao YP, Guo BK, Zhang K, Zhang FM, Zhang XM, Tu YQ. Catalytic enantioselective synthesis of chiral spirocyclic 1,3-diketones via organo-cation catalysis. Chem Commun (Camb) 2021; 57:11233-11235. [PMID: 34633005 DOI: 10.1039/d1cc05205e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An SPA-triazolium bromide-catalyzed transannular C-acylation of enol lactones is presented. This methodology provides convenient access to a range of enantioenriched spirocyclic 1,3-diketones in moderate to high yields and enantioselectivities and features a broad substrate scope in terms of enol lactones. The catalytic capability of this triazolium salt catalyst is also demonstrated in this enantioselective transformation, which could inspire its further application.
Collapse
Affiliation(s)
- Xiao-Yan Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Bao-Kuan Guo
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, 529020, P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
4
|
Litvajova M, Sorrentino E, Twamley B, Connon SJ. Base-free enantioselective S N2 alkylation of 2-oxindoles via bifunctional phase-transfer catalysis. Beilstein J Org Chem 2021; 17:2287-2294. [PMID: 34621391 PMCID: PMC8450950 DOI: 10.3762/bjoc.17.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 11/23/2022] Open
Abstract
N-Protected oxindole derivatives of unprecedented malleability bearing ester moieties at C-3 have been shown to participate in enantioselective phase-transfer-catalysed alkylations promoted by ad-hoc designed quaternary ammonium salts derived from quinine bearing hydrogen-bond donating substituents. For the first time in such phase-transfer-catalysed enolate alkylations, the reactions were carried out under base-free conditions. It was found that urea-based catalysts outperformed squaramide derivatives, and that the installation of a chlorine atom adjacent to the catalyst’s quinoline moiety aided in avoiding selectivity-reducing complications related to the production of HBr in these processes. The influence of steric and electronic factors from both the perspective of the nucleophile and electrophile were investigated and levels of enantiocontrol up to 90% ee obtained. The synthetic utility of the methodology was demonstrated via the concise enantioselective synthesis of a potent CRTH2 receptor antagonist.
Collapse
Affiliation(s)
- Mili Litvajova
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Emiliano Sorrentino
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Stephen J Connon
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| |
Collapse
|
5
|
Abstract
The asymmetric alkylation of enolates is a particularly versatile method for the construction of α-stereogenic carbonyl motifs, which are ubiquitous in synthetic chemistry. Over the past several decades, the focus has shifted to the development of new catalytic methods that depart from classical stoichiometric stereoinduction strategies (e.g., chiral auxiliaries, chiral alkali metal amide bases, chiral electrophiles, etc.). In this way, the enantioselective alkylation of prochiral enolates greatly improves the step- and redox-economy of this process, in addition to enhancing the scope and selectivity of these reactions. In this review, we summarize the origin and advancement of catalytic enantioselective enolate alkylation methods, with a directed emphasis on the union of prochiral nucleophiles with carbon-centered electrophiles for the construction of α-stereogenic carbonyl derivatives. Hence, the transformative developments for each distinct class of nucleophile (e.g., ketone enolates, ester enolates, amide enolates, etc.) are presented in a modular format to highlight the state-of-the-art methods and current limitations in each area.
Collapse
Affiliation(s)
- Timothy B Wright
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - P Andrew Evans
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. of China
| |
Collapse
|
6
|
Ohmatsu K, Morita Y, Kiyokawa M, Ooi T. Catalytic Asymmetric Cyanoalkylation of Electron-Deficient Olefins with Potassium Cyanide and Alkyl Halides. J Am Chem Soc 2021; 143:11218-11224. [PMID: 34270904 DOI: 10.1021/jacs.1c05380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The stereoselective cyanoalkylation of electron-deficient olefins with potassium cyanide and alkyl halides was developed based on the utilization of modular chiral 1,2,3-triazolium salts featuring a hydrogen bond-donor ability as catalysts. The reaction involving multiple carbon-carbon bond formations proceeds via the enantioselective conjugate addition of a cyanide ion and the consecutive catalyst-controlled diastereoselective alkylation of intermediary chiral triazolium enolates. Control experiments revealed that the use of a properly tuned chiral triazolium ion as a catalyst and the presence of the cyano functionality in the intermediary enolate are of crucial importance for achieving high levels of acyclic absolute and relative stereocontrol.
Collapse
Affiliation(s)
- Kohsuke Ohmatsu
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yusuke Morita
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Mari Kiyokawa
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Takashi Ooi
- Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
7
|
Sawaguchi D, Hayakawa S, Sakuma M, Niitsuma K, Kase D, Michii S, Ozawa M, Sakai Y, Sakamaki K, Ueyama K, Haraguchi R. Improved Synthesis of 1,2,3‐Triazolium Salts via Oxidative [3+2] Cycloaddition of Triazenes with Alkynes and Their Deprotonative Functionalization. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daiki Sawaguchi
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Shunsuke Hayakawa
- Department of Applied Chemistry Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Masaaki Sakuma
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Kenta Niitsuma
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Daiya Kase
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Shota Michii
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Miyuki Ozawa
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Yusuke Sakai
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Kentaro Sakamaki
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Kyohei Ueyama
- Department of Applied Chemistry Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
- Department of Applied Chemistry Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino, Chiba 275-0016 Japan
| |
Collapse
|
8
|
Yasui M, Yamada A, Tsukano C, Hamza A, Pápai I, Takemoto Y. Enantioselective Acetalization by Dynamic Kinetic Resolution for the Synthesis of γ‐Alkoxybutenolides by Thiourea/Quaternary Ammonium Salt Catalysts: Application to Strigolactones. Angew Chem Int Ed Engl 2020; 59:13479-13483. [DOI: 10.1002/anie.202002129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/23/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Motohiro Yasui
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Ayano Yamada
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Andrea Hamza
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
9
|
Yasui M, Yamada A, Tsukano C, Hamza A, Pápai I, Takemoto Y. Enantioselective Acetalization by Dynamic Kinetic Resolution for the Synthesis of γ‐Alkoxybutenolides by Thiourea/Quaternary Ammonium Salt Catalysts: Application to Strigolactones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Motohiro Yasui
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Ayano Yamada
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Chihiro Tsukano
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Andrea Hamza
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Imre Pápai
- Institute of Organic Chemistry Research Centre for Natural Sciences Magyar tudósok körútja 2 1117 Budapest Hungary
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
10
|
González Adelantado FV. Phase-transfer catalysis and the ion pair concept. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis review outlines the recent advances in the field of asymmetric phase-transfer catalysis and the ion-pair concept including alkylation of amino acids and peptides, oxyindoles and other substrates, conjugate additions, fluorinations, photo-induced phase-transfer catalysis, Nitro-Mannich reactions, heterocyclizations and cycloadditions for the preparation of heterocycles, derivatization of isoxazoles, umpolung conjugate addition of imines and other three asymmetric reactions.
Collapse
|
11
|
Armstrong RJ, Akhtar WM, Young TA, Duarte F, Donohoe TJ. Catalytic Asymmetric Synthesis of Cyclohexanes by Hydrogen Borrowing Annulations. Angew Chem Int Ed Engl 2019; 58:12558-12562. [PMID: 31265208 PMCID: PMC6771629 DOI: 10.1002/anie.201907514] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Hydrogen borrowing catalysis serves as a powerful alternative to enolate alkylation, enabling the direct coupling of ketones with unactivated alcohols. However, to date, methods that enable control over the absolute stereochemical outcome of such a process have remained elusive. Here we report a catalytic asymmetric method for the synthesis of enantioenriched cyclohexanes from 1,5-diols via hydrogen borrowing catalysis. This reaction is mediated by the addition of a chiral iridium(I) complex, which is able to impart high levels of enantioselectivity upon the process. A series of enantioenriched cyclohexanes have been prepared and the mode of enantioinduction has been probed by a combination of experimental and DFT studies.
Collapse
Affiliation(s)
| | - Wasim M. Akhtar
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Tom A. Young
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | - Fernanda Duarte
- Chemistry Research LaboratoryUniversity of OxfordOxfordOX1 3TAUK
| | | |
Collapse
|
12
|
Armstrong RJ, Akhtar WM, Young TA, Duarte F, Donohoe TJ. Catalytic Asymmetric Synthesis of Cyclohexanes by Hydrogen Borrowing Annulations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907514] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Wasim M. Akhtar
- Chemistry Research LaboratoryUniversity of Oxford Oxford OX1 3TA UK
| | - Tom A. Young
- Chemistry Research LaboratoryUniversity of Oxford Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research LaboratoryUniversity of Oxford Oxford OX1 3TA UK
| | | |
Collapse
|
13
|
Willig F, Lang J, Hans AC, Ringenberg MR, Pfeffer D, Frey W, Peters R. Polyfunctional Imidazolium Aryloxide Betaine/Lewis Acid Catalysts as Tools for the Asymmetric Synthesis of Disfavored Diastereomers. J Am Chem Soc 2019; 141:12029-12043. [DOI: 10.1021/jacs.9b04902] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Felix Willig
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Johannes Lang
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas C. Hans
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Mark R. Ringenberg
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Daniel Pfeffer
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Wolfgang Frey
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - René Peters
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
14
|
Reep C, Sun S, Takenaka N. C(
sp
2
)−H Hydrogen‐Bond Donor Groups in Chiral Small‐Molecule Organocatalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlyn Reep
- Department of Biomedical and Chemical Engineering and Sciences Florida Institute of Technology 150 West University Boulevard Melbourne, Florida 32901-6975
| | - Shiyu Sun
- Department of Biomedical and Chemical Engineering and Sciences Florida Institute of Technology 150 West University Boulevard Melbourne, Florida 32901-6975
| | - Norito Takenaka
- Department of Biomedical and Chemical Engineering and Sciences Florida Institute of Technology 150 West University Boulevard Melbourne, Florida 32901-6975
| |
Collapse
|
15
|
Hirama N, Sakamoto R, Maruoka K. Synthesis of α‐Quaternary Aldehydes via a Stereoselective Semi‐Pinacol Rearrangement of Optically Active Epoxy Alcohols. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naomichi Hirama
- Department of Chemistry Graduate School of ScienceKyoto University Sakyo, Kyoto 606-8502 Japan
| | - Ryu Sakamoto
- Department of Chemistry Graduate School of ScienceKyoto University Sakyo, Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Department of Chemistry Graduate School of ScienceKyoto University Sakyo, Kyoto 606-8502 Japan
- School of Chemical Engineering and Light IndustryGuangdong University of Technology China
| |
Collapse
|
16
|
Kumar CVS, Holyoke CW, Fleming FF. Diastereoselective Electrophile-Directed Alkylations. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Caleb W. Holyoke
- Department of Chemistry; Drexel University; 32 South 32nd St. Philadelphia PA 19104 USA
| | - Fraser F. Fleming
- Department of Chemistry; Drexel University; 32 South 32nd St. Philadelphia PA 19104 USA
| |
Collapse
|
17
|
He C, Cao W, Zhang J, Ge S, Feng X. Chiral N
,N
′-Dioxide/Scandium(III)-Catalyzed Asymmetric Alkylation of N
-Unprotected 3-Substituted Oxindoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changqiang He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Jianlin Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Shulin Ge
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry; Sichuan University; Chengdu 610064 People's Republic of China
| |
Collapse
|
18
|
Gramage-Doria R, Roisnel T. Ruthenium-Catalyzed C-H Bond Heteroarylation of Triazoles Enabled by a Deconvolution Strategy. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Thierry Roisnel
- CNRS; ISCRUMR 6226; Université Rennes; F-35000 Rennes France
| |
Collapse
|
19
|
Chen SK, Ma WQ, Yan ZB, Zhang FM, Wang SH, Tu YQ, Zhang XM, Tian JM. Organo-Cation Catalyzed Asymmetric Homo/Heterodialkylation of Bisoxindoles: Construction of Vicinal All-Carbon Quaternary Stereocenters and Total Synthesis of (−)-Chimonanthidine. J Am Chem Soc 2018; 140:10099-10103. [DOI: 10.1021/jacs.8b05386] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Si-Kai Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wen-Qiang Ma
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Bo Yan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Shao-Hua Wang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jin-Miao Tian
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
20
|
Paderes MC, Siau WY, Rong Z, Zhao Y. Catalytic and Enantioselective Direct α-Alkylation of 3-Aryl and 3-Alkyl Oxindole Using Quinine-Derived Urea Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201800906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Monissa C. Paderes
- Department of Chemistry; National University of Singapore; 3 Science 3 Drive Singapore 117543
- Institute of Chemistry; University of the Philippines, Diliman; Quezon City Philippines 1101
| | - Woon Yew Siau
- Department of Chemistry; National University of Singapore; 3 Science 3 Drive Singapore 117543
| | - Ziqiang Rong
- Department of Chemistry; National University of Singapore; 3 Science 3 Drive Singapore 117543
| | - Yu Zhao
- Department of Chemistry; National University of Singapore; 3 Science 3 Drive Singapore 117543
| |
Collapse
|