1
|
Yun X, Dong Y, Ge Z. Polymerization in Living Organisms for Biomedical Applications. Macromol Rapid Commun 2025; 46:e2401014. [PMID: 39973612 DOI: 10.1002/marc.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Indexed: 02/21/2025]
Abstract
Intra-tissue polymerization as a kind of polymerization reaction in biological tissues has the advantages of good biocompatibility, accurate localization, and dynamic response. In this review, the progress and applications of intra-tissue polymerization technologies in biomedicine are summarized. The biomedical applications of polymerization in different tissues are discussed, including living neural tissues to improve neural device performance, preparation of electronic devices in plants and animals, polymerization in tumor tissues for therapeutic and monitoring purposes, and polymerization in skin tissues for wound monitoring and therapy. Various polymerization strategies, including electrochemical polymerization, enzymatic polymerization, photopolymerization, and free radical polymerization, are used and described in the different intra-tissue polymerization methods. Moreover, the challenges in this field are discussed, such as the precise control of polymerization reactions and the development of biocompatible materials, and the future development direction of this field is also prospected.
Collapse
Affiliation(s)
- Xin Yun
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yansong Dong
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Key Laboratory of Sustainable Polymer Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Vazquez-Martel C, Florido Martins L, Genthner E, Almeida C, Martel Quintana A, Bastmeyer M, Gómez Pinchetti JL, Blasco E. Printing Green: Microalgae-Based Materials for 3D Printing with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402786. [PMID: 38876261 DOI: 10.1002/adma.202402786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Microalgae have emerged as sustainable feedstocks due to their ability to fix CO2 during cultivation, rapid growth rates, and capability to produce a wide variety of metabolites. Several microalgae accumulate lipids in high concentrations, especially triglycerides, along with lipid-soluble, photoactive pigments such as chlorophylls and derivatives. Microalgae-derived triglycerides contain longer fatty acid chains with more double bonds on average than vegetable oils, allowing a higher degree of post-functionalization. Consequently, they are especially suitable as precursors for materials that can be used in 3D printing with light. This work presents the use of microalgae as "biofactories" to generate materials that can be further 3D printed in high resolution. Two taxonomically different strains -Odontella aurita (O. aurita, BEA0921B) and Tetraselmis striata (T. striata, BEA1102B)- are identified as suitable microalgae for this purpose. The extracts obtained from the microalgae (mainly triglycerides with chlorophyll derivatives) are functionalized with photopolymerizable groups and used directly as printable materials (inks) without the need for additional photoinitiators. The fabrication of complex 3D microstructures with sub-micron resolution is demonstrated. Notably, the 3D printed materials show biocompatibility. These findings open new possibilities for the next generation of sustainable, biobased, and biocompatible materials with great potential in life science applications.
Collapse
Affiliation(s)
- Clara Vazquez-Martel
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Lilliana Florido Martins
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Elisa Genthner
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Carlos Almeida
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Antera Martel Quintana
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), KIT, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Juan Luis Gómez Pinchetti
- Banco Español de Algas (BEA), Universidad de Las Palmas de Gran Canaria (ULPGC), Muelle de Taliarte s/n, Telde, Las Palmas, 35214, Spain
| | - Eva Blasco
- Institute of Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Wang Z, Zhang Z, Wu C, Wang Z, Liu W. Pushing the Limit of Photo-Controlled Polymerization: Hyperchromic and Bathochromic Effects. Molecules 2024; 29:2377. [PMID: 38792240 PMCID: PMC11124407 DOI: 10.3390/molecules29102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The photocatalyst (PC) zinc tetraphenylporphyrin (ZnTPP) is highly efficient for photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. However, ZnTPP suffers from poor absorbance of orange light by the so-called Q-band of the absorption spectrum (maximum absorption wavelength λmax = 600 nm, at which molar extinction coefficient εmax = 1.0×104 L/(mol·cm)), hindering photo-curing applications that entail long light penetration paths. Over the past decade, there has not been any competing candidate in terms of efficiency, despite a myriad of efforts in PC design. By theoretical evaluation, here we rationally introduce a peripheral benzo moiety on each of the pyrrole rings of ZnTPP, giving zinc tetraphenyl tetrabenzoporphyrin (ZnTPTBP). This modification not only enlarges the conjugation length of the system, but also alters the a1u occupied π molecular orbital energy level and breaks the accidental degeneracy between the a1u and a2u orbitals, which is responsible for the low absorption intensity of the Q-band. As a consequence, not only is there a pronounced hyperchromic and bathochromic effect (λmax = 655 nm and εmax = 5.2×104 L/(mol·cm)) of the Q-band, but the hyperchromic effect is achieved without increasing the intensity of the less useful, low wavelength absorption peaks of the PC. Remarkably, this strong 655 nm absorption takes advantage of deep-red (650-700 nm) light, a major component of solar light exhibiting good atmosphere penetration, exploited by the natural PC chlorophyll a as well. Compared with ZnTPP, ZnTPTBP displayed a 49% increase in PET-RAFT polymerization rate with good control, marking a significant leap in the area of photo-controlled polymerization.
Collapse
Affiliation(s)
- Zhilei Wang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| | - Zipeng Zhang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China; (Z.W.); (Z.Z.)
| |
Collapse
|
4
|
Zhu J, Wang R, Ma Z, Zuo W, Zhu M. Unleashing the Power of PET-RAFT Polymerization: Journey from Porphyrin-Based Photocatalysts to Combinatorial Technologies and Advanced Bioapplications. Biomacromolecules 2024; 25:1371-1390. [PMID: 38346318 DOI: 10.1021/acs.biomac.3c01356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The emergence of photoinduced energy/electron transfer-reversible addition-fragmentation chain transfer polymerization (PET-RAFT) not only revolutionized the field of photopolymerization but also accelerated the development of porphyrin-based photocatalysts and their analogues. The continual expansion of the monomer family compatible with PET-RAFT polymerization enhances the range of light radiation that can be harnessed, providing increased flexibility in polymerization processes. Furthermore, the versatility of PET-RAFT polymerization extends beyond its inherent capabilities, enabling its integration with various technologies in diverse fields. This integration holds considerable promise for the advancement of biomaterials with satisfactory bioapplications. As researchers delve deeper into the possibilities afforded by PET-RAFT polymerization, the collaborative efforts of individuals from diverse disciplines will prove invaluable in unleashing its full potential. This Review presents a concise introduction to the fundamental principles of PET-RAFT, outlines the progress in photocatalyst development, highlights its primary applications, and offers insights for future advancements in this technique, paving the way for exciting innovations and applications.
Collapse
Affiliation(s)
- Jiaoyang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
5
|
Xie P, Yan W, Ji H, He H, Zhang L, Cao H. Emulsion-Directed Synthesis of Poly-Porphyrin Nanoparticles as Heterogeneous Photocatalysts for PET-RAFT Polymerization. Macromol Rapid Commun 2023; 44:e2300336. [PMID: 37571924 DOI: 10.1002/marc.202300336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Heterogeneous photocatalysts have attracted extensive attention in photo-induced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization due to their remarkable advantages such as easy preparation, tunable photoelectric properties, and recyclability. In this study, zinc (II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (ZnTAPP)-based poly-porphyrin nanoparticles (PTAPP-Zn) are constructed by an emulsion-directed approach. It is investigated as a heterogeneous photocatalyst for PET-RAFT polymerization of various methacrylate monomers under visible light exposure, and the reactions show refined polymerization control with high monomer conversions. Furthermore, it is demonstrated that the PTAPP-Zn nanoparticles with the larger pore size enhance photocatalytic activity in PET-RAFT polymerization. In addition, the capabilities of oxygen tolerance and temporal control are demonstrated and PTAPP-Zn particles can be easily recycled and reused without an obvious decrease in catalytic efficiency.
Collapse
Affiliation(s)
- Peng Xie
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weifeng Yan
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongyu Ji
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Haochen He
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liangshun Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hongliang Cao
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Kaya K, Kiliclar HC, Yagci Y. Photochemically generated ionic species for cationic and step-growth polymerizations. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
7
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Sun Y, Weng Y, Chen G, Zhang W. Switchable RAFT Polymerization Employing Photoresponsive HABI as a Mediator. Macromol Rapid Commun 2023; 44:e2200664. [PMID: 36253090 DOI: 10.1002/marc.202200664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Indexed: 11/07/2022]
Abstract
Recently, considerable interest has been devoted to developing switchable reversible addition fragmentation chain transfer (RAFT) polymerizations via photoactivation methods. Herein, a photo-deactivation strategy is introduced to regulate RAFT polymerization using photoresponsive hexaarylbiimidozole (HABI) as a mediator, which leads to switchable RAFT polymerization by repeated ON/OFF experiments. In comparison with well-known PET-RAFT polymerization, photo-deactivation RAFT (PD-RAFT) polymerization can be temporally stopped with UV light ON, where photoresponsive HABI can reversibly quench propagating radicals, resulting in switchable RAFT polymerization. The proposed mechanism of PD-RAFT polymerization in the presence of HABI involving radical quenching is based on ESR, NMR, GPC, MALDI-TOF-MS, and kinetics studies.
Collapse
Affiliation(s)
- Yue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China.,Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
9
|
Wu Z, Fang W, Wu C, Corrigan N, Zhang T, Xu S, Boyer C. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem Sci 2022; 13:11519-11532. [PMID: 36320386 PMCID: PMC9555728 DOI: 10.1039/d2sc03952d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 09/19/2023] Open
Abstract
We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system using tetrasulfonated zinc phthalocyanine (ZnPcS4 -) as a photocatalyst. Owing to the high catalytic efficiency and excellent oxygen tolerance of this system, well-controlled polyacrylamides, polyacrylates, and polymethacrylates were synthesized at fast rates without requiring deoxygenation. Notably, NIR wavelengths possess enhanced light penetration through non-transparent barriers compared to UV and visible light, allowing high polymerization rates through barriers. Using 6.0 mm pig skin as a barrier, the polymerization rate was only reduced from 0.36 to 0.21 h-1, indicating potential for biomedical applications. Furthermore, longer wavelengths (higher λ) can be considered an ideal light source for dispersion photopolymerization, especially for the synthesis of large diameter (d) nanoparticles, as light scattering is proportional to d 6/λ 4. Therefore, this aqueous photo-RAFT system was applied to photoinduced polymerization-induced self-assembly (photo-PISA), enabling the synthesis of polymeric nanoparticles with various morphologies, including spheres, worms, and vesicles. Taking advantage of high penetration and reduced light scattering of NIR wavelengths, we demonstrate the first syntheses of polymeric nanoparticles with consistent morphologies through thick barriers.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Wenbo Fang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 Shandong P. R. China
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Tong Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Sihao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Li J, Wu C, Lei Y, Liu W. Tuning Catalyst-Free Photocontrolled Polymerization by Substitution: A Quantitative and Qualitative Interpretation. J Phys Chem Lett 2022; 13:3290-3296. [PMID: 35389216 DOI: 10.1021/acs.jpclett.2c00830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Catalyst-free photocontrolled reversible addition-fragmentation chain transfer (RAFT) polymerization avoids the side effects of photocatalysts but has the accompanying slow kinetics, thereby warranting more efficient photolysis and faster chain transfer. To understand the underlying mechanisms, both quantitative and qualitative interpretations are needed. Such a goal can be achieved by the iCAS (imposed automatic selection and localization of complete active spaces) approach [J. Chem. Theory Comput. 2021, 17, 4846], which maintains the same CAS and meanwhile provides localized orbitals along the whole reaction. Taking dithiobenzoate as a representative of RAFT agents, it is found here that electron-donating substitution (by methoxy) clearly outperforms both electron-standing (by methyl) and electron-withdrawing (by cyano) substitutions in facilitating photo-RAFT polymerization, by narrowing the gap between the π* and σ* orbitals, so as to facilitate the π* → σ* charge transfer dominating both the photolysis and chain transfer processes. Such findings are of general values.
Collapse
Affiliation(s)
- Jun Li
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China
| | - Yibo Lei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Shaanxi key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
11
|
Lee Y, Kwon Y, Kim Y, Yu C, Feng S, Park J, Doh J, Wannemacher R, Koo B, Gierschner J, Kwon MS. A Water-Soluble Organic Photocatalyst Discovered for Highly Efficient Additive-Free Visible-Light-Driven Grafting of Polymers from Proteins at Ambient and Aqueous Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108446. [PMID: 35032043 DOI: 10.1002/adma.202108446] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Since the pioneering discovery of a protein bound to poly(ethylene glycol), the utility of protein-polymer conjugates (PPCs) is rapidly expanding to currently emerging applications. Photoinduced energy/electron-transfer reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization is a very promising method to prepare structurally well-defined PPCs, as it eliminates high-cost and time-consuming deoxygenation processes due to its oxygen tolerance. However, the oxygen-tolerance behavior of PET-RAFT polymerization is not well-investigated in aqueous environments, and thereby the preparation of PPCs using PET-RAFT polymerization needs a substantial amount of sacrificial reducing agents or inert-gas purging processes. Herein a novel water-soluble and biocompatible organic photocatalyst (PC) is reported, which enables visible-light-driven additive-free "grafting-from" polymerizations of a protein in ambient and aqueous environments. Interestingly, the developed PC shows unconventional "oxygen-acceleration" behavior for a variety of acrylic and acrylamide monomers in aqueous conditions without any additives, which are apparently distinct from previously reported systems. With such a PC, "grafting-from" polymerizations are successfully performed from protein in ambient buffer conditions under green light-emitting diode (LED) irradiation, which result in various PPCs that have neutral, anionic, cationic, and zwitterionic polyacrylates, and polyacrylamides. It is believed that this PC will be widely employed for a variety of photocatalysis processes in aqueous environments, including the living cell system.
Collapse
Affiliation(s)
- Yungyeong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Youngmu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Changhoon Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Siyang Feng
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049, Spain
| | - Jeehun Park
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Reinhold Wannemacher
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049, Spain
| | - Byungjin Koo
- Department of Polymer Science and Engineering, Dankook University, Gyeonggi-do, 16890, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049, Spain
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Wu C, Corrigan N, Lim CH, Liu W, Miyake G, Boyer C. Rational Design of Photocatalysts for Controlled Polymerization: Effect of Structures on Photocatalytic Activities. Chem Rev 2022; 122:5476-5518. [PMID: 34982536 PMCID: PMC9815102 DOI: 10.1021/acs.chemrev.1c00409] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the past decade, the use of photocatalysts (PCs) in controlled polymerization has brought new opportunities in sophisticated macromolecular synthesis. However, the selection of PCs in these systems has been typically based on laborious trial-and-error strategies. To tackle this limitation, computer-guided rational design of PCs based on knowledge of structure-property-performance relationships has emerged. These rational strategies provide rapid and economic methodologies for tuning the performance and functionality of a polymerization system, thus providing further opportunities for polymer science. This review provides an overview of PCs employed in photocontrolled polymerization systems and summarizes their progression from early systems to the current state-of-the-art. Background theories on electronic transitions are also introduced to establish the structure-property-performance relationships from a perspective of quantum chemistry. Typical examples for each type of structure-property relationships are then presented to enlighten future design of PCs for photocontrolled polymerization.
Collapse
Affiliation(s)
- Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | | | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- New Iridium Incorporated, Boulder, Colorado 80303, United States
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | | |
Collapse
|
13
|
Wu Z, Jung K, Wu C, Ng G, Wang L, Liu J, Boyer C. Selective Photoactivation of Trithiocarbonates Mediated by Metal Naphthalocyanines and Overcoming Activation Barriers Using Thermal Energy. J Am Chem Soc 2022; 144:995-1005. [PMID: 35005982 DOI: 10.1021/jacs.1c11700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metal naphthalocyanines (MNcs) were demonstrated to be efficient photocatalysts to activate photoinduced electron-transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, enabling well-controlled polymerization of (meth)acrylates under near-infrared (λ = 780 nm) light. Owing to their lower redox potential compared to previously explored photocatalysts, the activation of trithiocarbonate RAFT agents exhibited a unique selectivity that was dependent on the nature of the R group. Specifically, MNcs were capable in activating tertiary R group trithiocarbonates, whereas no activation of the trithiocarbonate possessing a secondary R group was observed. The combination of density functional theory calculations and experimental studies have revealed new mechanistic insights into the factors governing a PET-RAFT mechanism and explained this unique selectivity of MNcs toward tertiary carbon trithiocarbonates. Interestingly, by increasing the reaction temperature moderately (i.e., ∼15 °C), the energy barrier prohibiting the photoactivation of the trithiocarbonate with a secondary R group was overcome, enabling their successful activation.
Collapse
Affiliation(s)
- Zilong Wu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.,Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao 266237, China
| | - Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lei Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
14
|
Versace DL, Breloy L, Brezova V, Abbad Andalloussi S, Malval JP, Richeter S, Clément S. Bio-based porphyrins pyropheophorbide a and its Zn-complex as performing visible-light photosensitizers for free-radical photopolymerization. Polym Chem 2022. [DOI: 10.1039/d1py01714d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chlorophyll a derivative, namely pyropheophorbide a (Pyro), and the corresponding zinc (II) complex (Zn-Pyro) were used for the first time as performing visible-light photosensitizers (PS) for free-radical photopolymerization (FRP)...
Collapse
|
15
|
Banu S, Yadav PP. Chlorophyll: the ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Org Biomol Chem 2022; 20:8584-8598. [DOI: 10.1039/d2ob01473d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The emergence of chlorophyll, the principal photoacceptor of green plants, as an organo-photocatalyst.
Collapse
Affiliation(s)
- Saira Banu
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| | - Prem P. Yadav
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
- Academy of Scientific & Innovative Research, Ghaziabad-201002, India
| |
Collapse
|
16
|
Bell K, Freeburne S, Wolford A, Pester CW. Reusable polymer brush-based photocatalysts for PET-RAFT polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00966h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fluorescein polymer-brush functionalized glass beads synthesize polymers via photoelectron reversible addition fragmentation chain transfer (PET-RAFT) polymerization. These shelf stable heterogeneous catalysts can be recycled after simple filtration.
Collapse
Affiliation(s)
- Kirsten Bell
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah Freeburne
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Adam Wolford
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Huang Y, Li X, Zhang YC, Shi Z, Zeng L, Xie J, Du Y, Lu D, Hu Z, Cai T, Luo Z. Aqueous Protein-Polymer Bioconjugation via Photoinduced RAFT Polymerization Using High Loading Heterogeneous Catalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44488-44496. [PMID: 34514775 DOI: 10.1021/acsami.1c13770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Light-driven polymerization, such as photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, enables biological benign conditions and versatile functional polymer structure design, which is readily used in protein-polymer bioconjugates. However, conventional metalloporphyrinic homogeneous catalysts for PET-RAFT polymerization suffer from limited aqueous solubility and tedious purification. Here we demonstrate the design of PET-RAFT photocatalyst from the reticular assembled Zr-porphyrinic metal-organic frameworks (MOFs), along with a biomacromolecule-based chain transfer agent, as efficient bioconjugation tools in water. Our methodology offers manufacturing advantages on bioconjugates under mild conditions such that MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and cytotoxicity assays have shown the preservation of the protein integrity, bioactivity, and high cell viability after PET-RAFT polymerization. We find that the fast kinetics are benefiting from the ultrahigh loading of metalloporphyrins in MOF-525-Zn. This heterogeneous catalyst also allows us to maintain living characteristics to incorporate myriads of monomers into block copolymers. Other advantages like easy postreaction purification, reusability, and high oxygen tolerance even in an open system are demonstrated. This study provides a tool of highly efficient heterogeneous photocatalysts for polymer-protein bioconjugation in aqueous media and paves the road for biological applications.
Collapse
Affiliation(s)
- Ya Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| | - Xue Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yu Chi Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhiwei Shi
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Lun Zeng
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Jianbo Xie
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Yucong Du
- Guangzhou Baiyun Medical Adhesive Company Ltd., Guangzhou, Guangdong 510405, P. R. China
| | - Dong Lu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong 511458, P. R. China
| | - Zhigang Hu
- Silver Age Engineering Plastics (Dongguan) Company Ltd., Dongguan, Guangdong 523187, P. R. China
| | - Tao Cai
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
18
|
Breloy L, Mhanna R, Malval JP, Brezová V, Jacquemin D, Pascal S, Siri O, Versace DL. Azacalixphyrins as an innovative alternative for the free-radical photopolymerization under visible and NIR irradiation without the need of co-initiators. Chem Commun (Camb) 2021; 57:8973-8976. [PMID: 34486621 DOI: 10.1039/d1cc03607f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Azacalixphyrins are unique aromatic macrocycles featuring strong absorption from the visible to the near-infrared (NIR) spectral ranges. This work demonstrates through EPR spin-trapping experiments that the N-alkyl tetrasubstituted azacalixphyrin (ACP) can lead to the formation of carbon-centered radicals initiating for the free-radical photopolymerization (FRP) of bio-based acrylate monomer upon the irradiation of several light emitting diodes, which emissions range from 455 to 660 nm. Compared to other previously reported systems, the tremendous advantage of the ACP photoinitiating system is its ability to promote photopolymerization on its own, avoiding the introduction of co-initiators. A new potential application of this promising photoinitiator is highlighted through the fabrication of well-defined microstructures under NIR laser diode irradiation at λ = 800 nm.
Collapse
Affiliation(s)
- Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| | - Rana Mhanna
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Jean-Pierre Malval
- Institut de Science des Matériaux de Mulhouse (IS2M) (UMR-CNRS 7361), 15, rue Jean Starcky, Mulhouse 68057, France
| | - Vlasta Brezová
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Department of Physical Chemistry, Radlinského 9, Bratislava SK-812 37, Slovak Republic
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS, Nantes F-44000, France.
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09 13288, France.
| | - Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (UMR-CNRS 7182-UPEC), 2-8 rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
19
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
20
|
Wu C, Jung K, Ma Y, Liu W, Boyer C. Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths. Nat Commun 2021; 12:478. [PMID: 33473121 PMCID: PMC7817663 DOI: 10.1038/s41467-020-20640-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023] Open
Abstract
Photomediated-reversible-deactivation radical polymerisation (photo-RDRP) has a limited scope of available photocatalysts (PCs) due to multiple stringent requirements for PC properties, limiting options for performing efficient polymerisations under long wavelengths. Here we report an oxygen-mediated reductive quenching pathway (O-RQP) for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerisation. The highly efficient polymerisations that are performed in the presence of ambient air enable an expanded scope of available PCs covering a much-broadened absorption spectrum, where the oxygen tolerance of PET-RAFT allows high-quality polymerisation by preventing the existence of O2 in large amounts and efficient O-RQP is permitted due to its requirement for only catalytic amounts of O2. Initially, four different porphyrin dyes are investigated for their ability to catalyse PET-RAFT polymerisation via an oxidative quenching pathway (OQP), reductive quenching pathway (RQP) and O-RQP. Thermodynamic studies with the aid of (time-dependent) density functional theory calculations in combination with experimental studies, enable the identification of the thermodynamic constraints within the OQP, RQP and O-RQP frameworks. This knowledge enables the identification of four phthalocyanine photocatalysts, that were previously thought to be inert for PET-RAFT, to be successfully used for photopolymerisations via O-RQP. Well-controlled polymerisations displaying excellent livingness are performed at wavelengths in the red to near-infrared regions. The existence of this third pathway O-RQP provides an attractive pathway to further expand the scope of photocatalysts compatible with the PET-RAFT process and facile access to photopolymerisations under long wavelengths.
Collapse
Affiliation(s)
- Chenyu Wu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, 266237, China
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yongtao Ma
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, 266237, China.
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
21
|
Wang X, Pan M, Shi Z, Yu D, Huang F. Protein Nanobarrel for Integrating Chlorophyll a Molecules and Its Photochemical Performance. ACS APPLIED BIO MATERIALS 2021; 4:399-405. [PMID: 35014291 DOI: 10.1021/acsabm.0c00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Taking inspiration from biology's effectiveness in nanoscale organization of chlorophylls for photosynthesis, we describe here a design for chlorophyll-protein conjugates that exploits the central hydrophobic cavity of GroEL protein nanobarrel as a binding pocket for chlorophyll. We found water-soluble conjugates of chlorophyll with GroEL could be easily generated via detergent dialysis. The number of chlorophyll units bound to GroEL is tunable by varying the equilibrium concentration of chlorophyll during dialysis. Meanwhile, it is shown that an increase in the entrapped chlorophyll amount leads to an improvement of chlorophyll-GroEL photostability. Using methyl viologen as an electron acceptor, we demonstrate that chlorophyll-GroEL has photoreduction activity, which is also switchable in on/off illumination mode. Finally, it is shown that chlorophyll-GroEL-sensitized solar cells have good photoelectric properties, yielding a high photoelectric conversion efficiency of ∼0.9%. The current strategy may be adopted for integrating other photosensitizing dyes or for other photocatalytic reactions.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Meihong Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| |
Collapse
|
22
|
Ng G, Jung K, Li J, Wu C, Zhang L, Boyer C. Screening RAFT agents and photocatalysts to mediate PET-RAFT polymerization using a high throughput approach. Polym Chem 2021. [DOI: 10.1039/d1py01258d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a high throughput approach for the screening of RAFT agents and photocatalysts to mediate photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization.
Collapse
Affiliation(s)
- Gervase Ng
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Kenward Jung
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jun Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chenyu Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Liwen Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
23
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
24
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
25
|
Allison‐Logan S, Fu Q, Sun Y, Liu M, Xie J, Tang J, Qiao GG. From UV to NIR: A Full‐Spectrum Metal‐Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angew Chem Int Ed Engl 2020; 59:21392-21396. [DOI: 10.1002/anie.202007196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Stephanie Allison‐Logan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
- Centre for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering University of Technology Sydney Ultimo NSW 2007 Australia
| | - Yongkang Sun
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Min Liu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Jijia Xie
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Junwang Tang
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
26
|
Allison‐Logan S, Fu Q, Sun Y, Liu M, Xie J, Tang J, Qiao GG. From UV to NIR: A Full‐Spectrum Metal‐Free Photocatalyst for Efficient Polymer Synthesis in Aqueous Conditions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Stephanie Allison‐Logan
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Qiang Fu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
- Centre for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering University of Technology Sydney Ultimo NSW 2007 Australia
| | - Yongkang Sun
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Min Liu
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| | - Jijia Xie
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Junwang Tang
- Solar Energy & Advanced Materials Research Group Department of Chemical Engineering University College London Torrington Place London WC1E JE UK
| | - Greg G. Qiao
- Polymer Science Group Department of Chemical Engineering University of Melbourne Parkville VIC 3010 Australia
| |
Collapse
|
27
|
Zhao F, Zhang D, Xu C, Liu J, Shen C. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110552. [PMID: 32259759 DOI: 10.1016/j.ecoenv.2020.110552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, numerous studies have focused on the newly developed technologies for the thorough removal of tetracyclines (TCs). However, it is often ignored that the parent TCs have limited stability in aquatic environments. Thus, this study selected green alga Chlamydomonas reinhardtii with high chlorophyll content to rapidly degrade chlortetracycline (CTC) into products with low toxicity. As the results shown, the half-life times of CTC (1 × 10-6 mol/L) decreased from 10.35 h to 2.55 h by the presence of C. reinhardtii at 24±1 °C with 12/12 h dark/light cycle. The main transformation products were iso-chlortetracycline (ICTC), 4-epi-iso-chlortetracycline (EICTC), and other degradation products with lower molecular weight. The toxicity evaluation shows that the negative effects of CTC on growth rate and soluble protein content of green algae were significantly alleviated after the enhanced degradation treatment, while the generation of reactive oxygen species (ROS) and antioxidant response in algal cells returned to normal levels. The chlorophyll of algae played an important role of photosensitizer, which catalyzed the photo-induced electron/energy transfer of CTC degradation. The ROS generation of algae also was also inseparable from the enhanced degradation of CTC, especially when the chlorophyll was damaged at the high CTC concentration. Based on these results, we can better select suitable algal species to further strengthen the degradation of antibiotics and effectively reduce the environmental risk of CTC in aqueous system.
Collapse
Affiliation(s)
- Feng Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Di Zhang
- Anhui Hemei Environmental Protection Group co., Ltd, Hefei, 230088, PR China
| | - Chenye Xu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
28
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Li S, Han G, Zhang W. Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00054j] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different strategies on photoregulated RAFT polymerization are developed. This minireview summarizes recent advances in photoregulated RAFT polymerization and its applications.
Collapse
Affiliation(s)
- Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
30
|
Jiang J, Ye G, Lorandi F, Liu Z, Liu Y, Hu T, Chen J, Lu Y, Matyjaszewski K. Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light‐Regulated Macromolecular Synthesis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jingjie Jiang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| | - Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Yanqi Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
31
|
Jiang J, Ye G, Lorandi F, Liu Z, Liu Y, Hu T, Chen J, Lu Y, Matyjaszewski K. Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis. Angew Chem Int Ed Engl 2019; 58:12096-12101. [PMID: 31246340 DOI: 10.1002/anie.201906194] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/21/2019] [Indexed: 11/08/2022]
Abstract
The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo-regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near-infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3 PO4 photocatalysts in a reversible addition-fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR-mediated electron transfer mechanism. Owing to the LSPR-enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre-deoxygenation.
Collapse
Affiliation(s)
- Jingjie Jiang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yanqi Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
32
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805473] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine School of Chemical Engineering UNSW Sydney Australia
| |
Collapse
|
33
|
Corrigan N, Yeow J, Judzewitsch P, Xu J, Boyer C. Seeing the Light: Advancing Materials Chemistry through Photopolymerization. Angew Chem Int Ed Engl 2019; 58:5170-5189. [PMID: 30066456 DOI: 10.1002/anie.201805473] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
The application of photochemistry to polymer and material science has led to the development of complex yet efficient systems for polymerization, polymer post-functionalization, and advanced materials production. Using light to activate chemical reaction pathways in these systems not only leads to exquisite control over reaction dynamics, but also allows complex synthetic protocols to be easily achieved. Compared to polymerization systems mediated by thermal, chemical, or electrochemical means, photoinduced polymerization systems can potentially offer more versatile methods for macromolecular synthesis. We highlight the utility of light as an energy source for mediating photopolymerization, and present some promising examples of systems which are advancing materials production through their exploitation of photochemistry.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Peter Judzewitsch
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for Nanomedicine, School of Chemical Engineering, UNSW, Sydney, Australia
| |
Collapse
|
34
|
Wu C, Corrigan N, Lim CH, Jung K, Zhu J, Miyake G, Xu J, Boyer C. Guiding the Design of Organic Photocatalyst for PET-RAFT Polymerization: Halogenated Xanthene Dyes. Macromolecules 2019; 52:236-248. [PMID: 31537947 PMCID: PMC6752221 DOI: 10.1021/acs.macromol.8b02517] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By examining structurally similar halogenated xanthene dyes, this study establishes a guiding principle for resolving structure-property- performance relationships in the photocontrolled PET-RAFT polymerization system (PET-RAFT: photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer). We investigated the effect of the halogen substituents on the photophysical and electrochemical properties of the xanthene dyes acting as photocatalysts and their resultant effect on the performance of PET-RAFT polymerization. Consideration of the structure- property-performance relationships allowed design of a new xanthene photocatalyst, where its photocatalytic activity (oxygen tolerance and polymerization rate) was successfully optimized for PET-RAFT polymerization. We expect that this study will serve as a theoretical framework in broadly guiding the design of high performance photocatalysts for organic photocatalysis.
Collapse
Affiliation(s)
- Chenyu Wu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chern-Hooi Lim
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Zhu
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Garret Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
35
|
Zhang T, Yeow J, Boyer C. A cocktail of vitamins for aqueous RAFT polymerization in an open-to-air microtiter plate. Polym Chem 2019. [DOI: 10.1039/c9py00898e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a highly biocompatible photoinitiation strategy based on Vitamin B2 and Vitamin C. This two-component photoinitiator enables RAFT polymerization to be conducted in high throughput in an open-to-air microtiter plate.
Collapse
Affiliation(s)
- Tong Zhang
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Jonathan Yeow
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
36
|
Corrigan N, Zhernakov L, Hashim MH, Xu J, Boyer C. Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00014c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A slug flow process has been utilised in conjunction with metal-free photopolymerisation to produce well-defined polymers with outstanding consistency.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Leonid Zhernakov
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Muhammad Hazim Hashim
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| |
Collapse
|
37
|
Zeng LL, Xie WY, Yang CX, Liang E, Wang GX. Photomediated atom transfer radical polymerization of MMA under long-wavelength light irradiation. IRANIAN POLYMER JOURNAL 2018. [DOI: 10.1007/s13726-018-0661-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
He BH, Lu M, Yang CX, Liu Y, Liang E, Wang GX. Perylene as a visible light photoredox catalyst for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of MMA. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2018. [DOI: 10.1080/10601325.2018.1476825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bin-Hong He
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| | - Mang Lu
- School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, Jiangxi Province, China
| | - Cai-Xia Yang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| | - Yu Liu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| | - Enxiang Liang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| | - Guo-Xiang Wang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan Province, China
| |
Collapse
|
39
|
Discekici EH, Anastasaki A, Read de Alaniz J, Hawker CJ. Evolution and Future Directions of Metal-Free Atom Transfer Radical Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01401] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emre H. Discekici
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Athina Anastasaki
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, Materials Department, and Materials Research Laboratory University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Ng G, Yeow J, Chapman R, Isahak N, Wolvetang E, Cooper-White JJ, Boyer C. Pushing the Limits of High Throughput PET-RAFT Polymerization. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01600] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Jiang J, Ye G, Wang Z, Lu Y, Chen J, Matyjaszewski K. Heteroatom‐Doped Carbon Dots (CDs) as a Class of Metal‐Free Photocatalysts for PET‐RAFT Polymerization under Visible Light and Sunlight. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807385] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjie Jiang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
- Beijing Key Lab of Radioactive Waste Treatment Tsinghua University Beijing 100084 China
| | - Zhe Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
- Beijing Key Lab of Radioactive Waste Treatment Tsinghua University Beijing 100084 China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China
- Beijing Key Lab of Radioactive Waste Treatment Tsinghua University Beijing 100084 China
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
42
|
Jiang J, Ye G, Wang Z, Lu Y, Chen J, Matyjaszewski K. Heteroatom-Doped Carbon Dots (CDs) as a Class of Metal-Free Photocatalysts for PET-RAFT Polymerization under Visible Light and Sunlight. Angew Chem Int Ed Engl 2018; 57:12037-12042. [PMID: 30043508 DOI: 10.1002/anie.201807385] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/21/2018] [Indexed: 01/21/2023]
Abstract
A key challenge of photoregulated living radical polymerization is developing efficient and robust photocatalysts. Now carbon dots (CDs) have been exploited for the first time as metal-free photocatalysts for visible-light-regulated reversible addition-fragmentation chain-transfer (RAFT) polymerization. Screening of diverse heteroatom-doped CDs suggested that the P- and S-doped CDs were effective photocatalysts for RAFT polymerization under mild visible light following a photoinduced electron transfer (PET) involved oxidative quenching mechanism. PET-RAFT polymerization of various monomers with temporal control, narrow dispersity (Đ≈1.04), and chain-end fidelity was achieved. Besides, it was demonstrated that the CD-catalyzed PET-RAFT polymerization was effectively performed under natural solar irradiation.
Collapse
Affiliation(s)
- Jingjie Jiang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China
| | - Zhe Wang
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yuexiang Lu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
- Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
43
|
Yeow J, Chapman R, Gormley AJ, Boyer C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem Soc Rev 2018; 47:4357-4387. [PMID: 29718038 PMCID: PMC9857479 DOI: 10.1039/c7cs00587c] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The requirement for deoxygenation in controlled/living radical polymerisation (CLRP) places significant limitations on its widespread implementation by necessitating the use of large reaction volumes, sealed reaction vessels as well as requiring access to specialised equipment such as a glove box and/or inert gas source. As a result, in recent years there has been intense interest in developing strategies for overcoming the effects of oxygen inhibition in CLRP and therefore remove the necessity for deoxygenation. In this review, we highlight several strategies for achieving oxygen tolerant CLRP including: "polymerising through" oxygen, enzyme mediated deoxygenation and the continuous regeneration of a redox-active catalyst. In order to provide further clarity to the field, we also establish some basic parameters for evaluating the degree of "oxygen tolerance" that can be achieved using a given oxygen scrubbing strategy. Finally, we propose some applications that could most benefit from the implementation of oxygen tolerant CLRP and provide a perspective on the future direction of this field.
Collapse
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
44
|
Zhu N, Hu X, Fang Z, Guo K. Continuous Flow Photoinduced Reversible Deactivation Radical Polymerization. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Xin Hu
- College of Materials Science and Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering State Key Laboratory of Materials-Oriented Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
45
|
Hussain SM, Herling VR, Rodrigues PHM, Naz I, Khan H, Khan MT. Mini review on photosensitization by plants in grazing herbivores. Trop Anim Health Prod 2018; 50:925-935. [DOI: 10.1007/s11250-018-1583-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 03/20/2018] [Indexed: 01/16/2023]
|
46
|
Liang E, Liu MS, He B, Wang GX. ZnO as photocatalyst for photoinduced electron transfer-reversible addition-fragmentation chain transfer of methyl methacrylate. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21959] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Enxiang Liang
- College of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan Province China
| | - Mu-sheng Liu
- College of Life Science & Resources Environment; Yichun University; Yichun City China
| | - Binhong He
- College of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan Province China
| | - Guo-Xiang Wang
- College of Chemistry and Chemical Engineering; Hunan Institute of Science and Technology; Yueyang Hunan Province China
| |
Collapse
|
47
|
Phommalysack-Lovan J, Chu Y, Boyer C, Xu J. PET-RAFT polymerisation: towards green and precision polymer manufacturing. Chem Commun (Camb) 2018; 54:6591-6606. [DOI: 10.1039/c8cc02783h] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinduced electron/energy transfer-reversible addition–fragmentation chain transfer (PET-RAFT) process has opened up a new way of precision polymer manufacturing to satisfy the concept of green chemistry.
Collapse
Affiliation(s)
- Jamie Phommalysack-Lovan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Yingying Chu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
48
|
Quan Q, Gong H, Chen M. Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials. Polym Chem 2018. [DOI: 10.1039/c8py00990b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Semifluorinated poly(meth)acrylates are prepared under both organocatalyzed and catalyst-free photo-controlled radical polymerization conditions from simple RAFT agents.
Collapse
Affiliation(s)
- Qinzhi Quan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Honghong Gong
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Mao Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
49
|
Yilmaz G, Yagci Y. Photoinduced metal-free atom transfer radical polymerizations: state-of-the-art, mechanistic aspects and applications. Polym Chem 2018. [DOI: 10.1039/c8py00207j] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Photoinduced atom transfer radical polymerization has recently been the center of intensive research in synthetic polymer chemistry because of the unique possibility of topological and temporal control in addition to precise control of macromolecular structure offered by conventional ATRP.
Collapse
Affiliation(s)
- Gorkem Yilmaz
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
| | - Yusuf Yagci
- Department of Chemistry
- Istanbul Technical University
- Istanbul
- Turkey
- Center of Excellence for Advanced Materials Research (CEAMR) and Department of Chemistry
| |
Collapse
|