1
|
Kang Q, Chen B, He M, Hu B. Discrimination of Multiple Homologous Sequences Based on DNA Logic Gate and Elemental Labeling Technology. Anal Chem 2024; 96:6329-6336. [PMID: 38597405 DOI: 10.1021/acs.analchem.3c05915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The simultaneous discrimination of multiple homologous sequences faces challenges due to the high similarity of sequences and the complexity of the discrimination system in most reported works. Herein, a simple and ingenious analysis method was developed to identify eight miRNAs of the let-7 family by combining logic gates and entropy-driven catalytic (EDC)-based lanthanide labeling inductively coupled plasma mass spectrometry (ICP-MS) technology. Specifically, eight miRNAs were first divided into four types according to the difference of bases in the domains 2 and 3 on sequences. To identify the type of targets, a DNA logic gate was constructed with two strand displacement reactions on magnetic beads that could be initiated by different types of targets. Based on the difference of the output signals after two strand displacement reactions, the type of targets was distinguished preliminarily. Then, the discrimination of a specific target was achieved with EDC-based lanthanide labeling ICP-MS detection. By labeling the different magnetic probes with different elemental tags, a specific element signal released from magnetic beads after EDC could be detected by ICP-MS, and therefore, simultaneous detection of homologous sequences was completed. This work provided a novel and simple method for highly specific identification of homologous sequences with the assistance of a logic gate and can promote further development of elemental labeling ICP-MS in the field of multiple analysis.
Collapse
Affiliation(s)
- Qi Kang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Cooperative strand displacement circuit with dual-toehold and bulge-loop structure for single-nucleotide variations discrimination. Biosens Bioelectron 2022; 216:114677. [PMID: 36087401 DOI: 10.1016/j.bios.2022.114677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Nucleic acid nanotechnologies based on toehold-mediated strand displacement are ideally suited for single-nucleotide variations (SNVs) detection. But only a limited number of means could be used to construct selective hybridization probes via finely designed toehold and regulation of branching migration. Herein, we present a cooperative hybridization strategy relying on a dual-toehold and bulge-loop (DT&BL) probe, coupled with the strand displacement catalytic (SDC) cycle to identify SNVs. The dual-toehold can simultaneously hybridize the 5' and 3' ends of the target, so that it possessed the mutual correction function for improving the specificity in comparison with the single target-binding domain. Insertion of BLs into the dual-toehold probe allows tuning of Gibbs free energy change (ΔG) and control of the reaction rate during branching migration. Using the SDC cycle, the reactivity and selectivity of the DT&BL probe were increased drastically without elaborate competitive sequences. The feasibilities of this platform were demonstrated by the identification of three cancer-related genes. Moreover, the applicability of this biosensor to detect clinical samples showed satisfactory accuracy and reliability. We envision it would offer a new perspective for the construction of highly specific probes based on dynamic DNA nanotechnology, and serves as a promising tool for clinical diagnostics.
Collapse
|
3
|
Zhang L, Chen J, He M, Su X. Molecular dynamics simulation-guided toehold mediated strand displacement probe for single-nucleotide variants detection. EXPLORATION (BEIJING, CHINA) 2022; 2:20210265. [PMID: 37324584 PMCID: PMC10190925 DOI: 10.1002/exp.20210265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 06/16/2023]
Abstract
Single nucleotide variant (SNV) has become an emerging biomarker for various diseases such as cancers and infectious diseases. Toehold-mediated strand displacement (TMSD), the core reaction of DNA nanotechnology, has been widely leveraged to identify SNVs. However, inappropriate choice of mismatch location results in poor discrimination ability. Here, we comprehensively investigate the effect of mismatch location on TMSD kinetics by molecular dynamic simulation tool oxDNA through umbrella sampling and forward flux sampling disclosing that mismatches at the border of the toehold and branch migration domain yield the lowest TMSD reaction rate. Nine disease-related SNVs (SARS-CoV-2-D614G, EGFR-L858R, EGFR-T790M, KRAS-G12R, etc.) were tested experimentally showing a good agreement with simulation. The best choice of mismatch location enables high discrimination factor with a median of 124 for SNV and wild type. Coupling with a probe-sink system, a low variant allele frequency of 0.1% was detected with 3 S/N. We successfully used the probes to detect SNVs with high confidence in the PCR clones of constructed plasmids. This work provides mechanistic insights into TMSD process at the single-nucleotide level and can be a guidance for the design of TMSD system with fine-tuning kinetics for various applications in biosensors and nanotechnology.
Collapse
Affiliation(s)
- Linghao Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Jing Chen
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Mengya He
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xin Su
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
4
|
Huang D, Han H, Guo C, Lin X, Chen D, Yang S, Yang Q, Li F. Information processing using an integrated DNA reaction network. NANOSCALE 2021; 13:5706-5713. [PMID: 33683263 DOI: 10.1039/d0nr09148k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Living organisms use interconnected chemical reaction networks (CRNs) to exchange information with the surrounding environment and respond to diverse external stimuli. Inspired by nature, numerous artificial CRNs with a complex information processing function have been recently introduced, with DNA as one of the most attractive engineering materials. Although much progress has been made in DNA-based CRNs in terms of controllable reaction dynamics and molecular computation, the effective integration of signal translation with information processing in a single CRN remains to be difficult. In this work, we introduced a stimuli-responsive DNA reaction network capable of integrated information translation and processing in a stepwise manner. This network is designed to integrate sensing, translation, and decision-making operations by independent modules, in which various logic units capable of performing different functions were realized, including information identification (YES and OR gates), integration (AND and AND-AND gates), integration-filtration (AND-AND-NOT gate), comparison (Comparator), and map-to-map analysis (Feynman gate). Benefitting from the modular and programmable design, continuous and parallel processing operations are also possible. With the innovative functions, we show that the DNA network is a highly useful addition to the current DNA-based CRNs by offering a bottom-up strategy to design devices capable of cascaded information processing with high efficiency.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tan Y, Zhong W, Tang W, Fan J, Zhang X, Guo D, Wu X, Liu Y. Improvement of Molecular Diagnosis Using Domain-Level Single-Nucleotide Variants by Eliminating Unexpected Secondary Structures. Chemistry 2020; 26:16256-16260. [PMID: 32964533 DOI: 10.1002/chem.202003592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 01/06/2023]
Abstract
Identification of single-nucleotide variants (SNVs) is of great significance in molecular diagnosis. The problem that should not be ignored in the identification process is that the unexpected secondary structure of the target nucleic acid may greatly affect the detection accuracy. Herein, we proposed a conditional domain-level SNV diagnosis strategy, in which the subsequent SNV detection can only be carried out after eliminating the unexpected secondary structure of target DNA. Specifically, the target DNA is assembled into a rigid double strand, which makes folding the target DNA difficult and the unexpected secondary structure is eliminated. Based on this double-stranded structure, specially designed probes are used to detect double-stranded properties and report abundant domain-level oligonucleotide information to improve the effective information in the detection results and complete domain-level SNV diagnosis. If the unexpected secondary structure is not eliminated, the detector will first detect it and feed back to us, ensuring the accuracy of the subsequent detection results. With the occurrence (or not) of SNV and the change of the SNV site, in the proof-of-concept experiment, we successfully identified the four homologous sequences to be tested related to BRAF gene.
Collapse
Affiliation(s)
- Yun Tan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Weiyang Tang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaohui Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Donghua Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Xiaolong Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Nanhai Avenue 3688, Nanshan District, Shenzhen, Guangdong, CN, 518060, P. R. China
| |
Collapse
|
6
|
|
7
|
Sun X, Zheng X, Zhao S, Liu Y, Wang B. DNA circuits driven by conformational changes in DNAzyme recognition arms. RSC Adv 2020; 10:7956-7966. [PMID: 35492184 PMCID: PMC9049901 DOI: 10.1039/d0ra00115e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
DNA computing plays an important role in nanotechnology due to the unique programmability and parallelism of DNA molecules. As an important tool to realize DNA computation, various logic computing devices have great application potential. The application of DNAzyme makes the achievements in the field of logical computing more diverse. In order to improve the efficiency of the logical units run by DNAzyme, we proposed a strategy to regulate the DNA circuit by the conformational change of the E6-type DNAzyme recognition arms driven by Mg2+. This strategy changes the single mode of DNAzyme signal transmission, extends the functions of E6-type DNAzyme, and saves the time of signal transmission in the molecular scale. To verify the feasibility of this strategy, first, we constructed DNA logic gates (YES, OR, and AND). Second, we cascade different logic gates (YES-YES, YES-AND) to prove the scalability. Finally, a self-catalytic DNA circuit is established. Through the experimental results, we verified that this DNAzyme regulation strategy relatively reduces the cost of logic circuits to some extent and significantly increases the reaction rate, and can also be used to indicate the range of Mg2+ concentrations. This research strategy provides new thinking for logical computing and explores new directions for detection and biosensors.
Collapse
Affiliation(s)
- Xinyi Sun
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Xuedong Zheng
- College of Computer Science, Shenyang Aerospace University Shenyang 110136 China
| | - Sue Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| | - Yuan Liu
- School of Computer Scicence and Technology, Dalian University of Technology Dalian 116024 China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University Dalian 116622 China
| |
Collapse
|
8
|
Huang D, Guo C, Miao J, Zhang Y, Lin X, Chen D, Yang S, Yang Q, Tang Y. Construction of a novel DNA-based comparator and its application in intelligent analysis. NANOSCALE 2019; 11:16241-16244. [PMID: 31454010 DOI: 10.1039/c9nr05270d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a novel and general comparator was constructed based on cascaded strand displacement reactions and DNA hybridization and its potential in intelligently weighing the quantitative predominance of two targets was explored in a complex biological matrix, which not only enriches the information processing mode of DNA computation but also provides an instructive way to deal with quantitative analyzing tasks in further DNA-based logic sensors.
Collapse
Affiliation(s)
- Dan Huang
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Chen Guo
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jiarong Miao
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yi Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Xiao Lin
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Die Chen
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Shu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Qianfan Yang
- College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Centre for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
9
|
Tang W, Zhong W, Fan J, Tan Y, Huang Q, Liu Y. Addressable activated cascade DNA sequential logic circuit model for processing identical input molecules. Chem Commun (Camb) 2019; 55:6381-6384. [DOI: 10.1039/c9cc02632k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 3-bit register sequential logic circuit, constructed based on a state and activation mechanism, has a sequential storage function.
Collapse
Affiliation(s)
- Weiyang Tang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Weiye Zhong
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yun Tan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qichen Huang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
10
|
Zhong W, Tang W, Tan Y, Fan J, Huang Q, Zhou D, Hong W, Liu Y. A DNA arithmetic logic unit for implementing data backtracking operations. Chem Commun (Camb) 2019; 55:842-845. [DOI: 10.1039/c8cc08441f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A data backtracking operation was successfully realized by adding redundant modules to the circuit, greatly improving the system reliability.
Collapse
Affiliation(s)
- Weiye Zhong
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Weiyang Tang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yun Tan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Jin Fan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Qichen Huang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Danli Zhou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Weimin Hong
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
11
|
Zheng J, Ji X, Du M, Tian S, He Z. Rational construction of a DNA nanomachine for HIV nucleic acid ultrasensitive sensing. NANOSCALE 2018; 10:17206-17211. [PMID: 30191238 DOI: 10.1039/c8nr05206a] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
HIV nucleic acids, one kind of significant biomarker, play an important role in fundamental studies and clinical diagnosis. Importantly, the early accurate diagnosis for HIV nucleic acids at ultralow concentrations can potentially extend the life of patients. In the current work, we developed a DNA nanomachine on gold nanoparticles (AuNPs) coupling rolling circle amplification and DNA walker cascade amplification for ultrasensitive detection of HIV nucleic acids. This DNA nanomachine sensing strategy exhibits a significantly low detection limit down to 1.46 fM. Furthermore, this DNA nanomachine biosensor is capable of detecting target DNA in real samples because of its high selectivity and sensitivity. Moreover, the DNA nanomachine biosensor is capable of discriminating single-base mismatch lower than 3.5 pM. The results showed that this DNA nanomachine biosensor has the potential for biomedical studies and clinical applications.
Collapse
Affiliation(s)
- Jiao Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, P. R. China.
| | | | | | | | | |
Collapse
|