1
|
Saha S, Bhattacharyya H, Dolai S, Samantaray S, Verma K, Punniyamurthy T. Ru-Catalyzed Redox-Neutral Coupling of N-Chlorobenzamides with Unsymmetrical Alkynes in Water. J Org Chem 2024; 89:16850-16864. [PMID: 39446336 DOI: 10.1021/acs.joc.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In water, Ru-catalyzed annulation of N-chlorobenzamides with unsymmetrical internal alkynes bearing aryl, hydroxy, ester, and sulfonyl functionalities has been accomplished to afford isoquinolone scaffolds under external oxidant-free conditions at room temperature. Use of water as reaction medium, redox-neutral conditions, regioselectivity, and substrate scope are important practical features.
Collapse
Affiliation(s)
- Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Hemanga Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Subhankar Dolai
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Swati Samantaray
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
2
|
Jothi Murugan S, Jeganmohan M. Cp*Co(III)-Catalyzed Regioselective [4 + 2]-Annulation of N-Chlorobenzamides with Vinyl Acetate/Vinyl Ketones. J Org Chem 2023; 88:1578-1589. [PMID: 36680527 DOI: 10.1021/acs.joc.2c02640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An efficient and straightforward strategy for the synthesis of isoquinolones through [4 + 2]-annulation of N-chlorobenzamides with vinyl acetate in the presence of CoCp*(III) catalyst in a regioselective manner is described. Furthermore, the annulation reaction was diversified by using vinyl ketones. By utilizing this strategy, biologically valuable isoquinolone derivatives were prepared in good yields. Subsequently, isoquinolone derivatives were further transformed into 1-chloroisoquinolines in the presence of POCl3. Furthermore, mechanistic investigations such as deuterium labeling study and competition experiment were performed to support the proposed reaction mechanism.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
3
|
Zhai S, Qiu S, Yang S, Gao X, Feng X, Yun C, Han N, Niu Y, Wang J, Zhai H. Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Synthesis of arylsulfonyl-substituted indolo[2,1-a]isoquinolin-6(5H)-one derivatives via a TBAI-catalyzed radical cascade cyclization. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Talukdar K, Shah TA, Sarkar T, Roy S, Maharana PK, Punniyamurthy T. Pd-catalyzed bidentate auxiliary assisted remote C(sp 3)-H functionalization. Chem Commun (Camb) 2021; 57:13221-13233. [PMID: 34816830 DOI: 10.1039/d1cc05291h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pd-catalyzed C-H functionalisation affords effective synthetic tools to construct C-C and C-X bonds. Despite the challenges, the distal functionalization of C(sp3)-H bonds has witnessed significant developments and the use of bidentate auxiliaries has garnished this area by providing an opportunity to control reactivity as well as selectivity beyond proximal sites. This article covers the recent developments on the Pd-catalyzed bidentate auxiliary-assisted distal C(sp3)-H functionalization and is categorized based on the nature of functionalizations.
Collapse
Affiliation(s)
- Kangkan Talukdar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tariq A Shah
- Department of Chemistry, University of Kashmir, Srinagar-190006, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Subhasish Roy
- Department of Chemistry, School of Fundamental and Applied Sciences, Assam Don Bosco University, Kamarkuchi, Sonapur-782402, India
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
6
|
Zhai H, Liu M, Wang C, Qiu S, Wei J, Yang H, Wu Y. Cobalt-Catalyzed 2-(1-Methylhydrazinyl)pyridine-Assisted C-H Alkylation/Annulation: Mechanistic Insights and Rapid Access to Cyclopenta[ c]isoquinolinone Derivatives. J Org Chem 2021; 86:14915-14927. [PMID: 34570982 DOI: 10.1021/acs.joc.1c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We have developed cobalt-catalyzed, bidentate 2-(1-methylhydrazinyl)pyridine (MHP)-directed C(sp2)-H alkylation/annulation of benzoic hydrazides with various alkenes. Notably, diverse cyclopenta[c]isoquinolinones and dihydroisoquinolinones were obtained via this functional group-tolerant protocol. The reaction can be performed on a gram scale while maintaining an excellent yield, and the directing group can be removed efficiently under mild conditions. Furthermore, density-functional theory (DFT) calculations provide an incisive understanding of the observed regioselectivities for different olefins.
Collapse
Affiliation(s)
- Hongbin Zhai
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Miao Liu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Chao Wang
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Shuxian Qiu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Department of Chemistry, Guangdong University of Education, Guangzhou 510303, China
| | - Jian Wei
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongjian Yang
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yundong Wu
- The Key Laboratory of Chemical Genomics and Lab of Computational Chemistry and Drug Design, The State Key Laboratory of Chemical Oncogenomics, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
7
|
Wei J, Shao X, Zhao H, Yang H, Qiu S, Zhai H. Palladium-Catalyzed Arylation of C(sp 2)-H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS OMEGA 2021; 6:25151-25161. [PMID: 34632174 PMCID: PMC8495716 DOI: 10.1021/acsomega.1c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Palladium-catalyzed C(sp2)-H arylation of ortho C-H bonds involving 2-(1-methylhydrazinyl)pyridine (MHP) as the directing group has been investigated. The reaction proceeds smoothly under an air atmosphere to generate biaryl derivatives in an environmentally friendly manner while tolerating a wide range of functional groups. Notably, the directing group present in the product could be easily removed under mild reductive conditions.
Collapse
Affiliation(s)
- Jian Wei
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Xiaoru Shao
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Hua Zhao
- Institute
of Drug Discovery Technology, QianXuesen Collaborative Research Center
of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hongjian Yang
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Shuxian Qiu
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
| | - Hongbin Zhai
- The
State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial
Key Laboratory of Nano-Micro Materials Research, School of Chemical
Biology and Biotechnology, Shenzhen Graduate
School of Peking University, Shenzhen 518055, China
- Institute
of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
8
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Xiong F, Li B, Yang C, Zou L, Ma W, Gu L, Mei R, Ackermann L. Copper-mediated oxidative C-H/N-H activations with alkynes by removable hydrazides. Beilstein J Org Chem 2021; 17:1591-1599. [PMID: 34290838 PMCID: PMC8275871 DOI: 10.3762/bjoc.17.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
The efficient copper-mediated oxidative C-H alkynylation of benzhydrazides was accomplished with terminal alkynes. Thus, a heteroaromatic removable N-2-pyridylhydrazide allowed for domino C-H/N-H functionalization. The approach featured remarkable functional group compatibility and ample substrate scope. Thereby, highly functionalized aromatic and heteroaromatic isoindolin-1-ones were accessed with high efficacy with rate-limiting C-H cleavage.
Collapse
Affiliation(s)
- Feng Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Bo Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, P.R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P.R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany and 4Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Wang H, Cao F, Gao W, Wang X, Yang Y, Shi T, Wang Z. Pd(II)-Catalyzed Annulation Reactions of Epoxides with Benzamides to Synthesize Isoquinolones. Org Lett 2021; 23:863-868. [PMID: 33464099 DOI: 10.1021/acs.orglett.0c04097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epoxides as alkylating reagents are unprecedentedly applied in Pd(II)-catalyzed C-H alkylation and oxidative annulation of substituted benzamides to synthesize isoquinolones rather than isochromans, which is accomplished through alerting the previously reported reaction mechanism by the addition of oxidant and TEA. Under these conditions, various isoquinolones have been prepared with yields up to 92%. In addition, this methodology has been successfully employed in the total syntheses of rupreschstyril, siamine, and cassiarin A in an expedient fashion.
Collapse
Affiliation(s)
- Huihong Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Fei Cao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Weiwei Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| | - Yuhang Yang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| | - Zhen Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China.,School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
11
|
Zhao H, Wang T, Qing Z, Zhai H. Cobalt-catalyzed 2-(1-methylhydrazinyl)pyridine-assisted cyclization of thiophene-2-carbohydrazides with maleimides: efficient synthesis of thiophene-fused pyridones. Chem Commun (Camb) 2021; 56:5524-5527. [PMID: 32296787 DOI: 10.1039/d0cc01582b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A cobalt-catalyzed direct C-H/N-H functionalization of thiophene-2-carbohydrazides with maleimides by utilizing 2-(1-methylhydrazinyl)pyridine (MHP) as an easily removable bidentate directing group has been developed. This formal [4+2] cycloaddition has been achieved for the first time, and it provides an alternative and versatile approach to construct thiophene-fused pyridones using an inexpensive cobalt catalyst. The C-H/N-H activation cascade protocol showed a high efficiency and a broad substrate scope, and the products were obtained in good to excellent yields.
Collapse
Affiliation(s)
- Hua Zhao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Taimin Wang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China. and Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhineng Qing
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China. and The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
12
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
13
|
Gurram RK, Rajesh M, Reddy Singam MK, Nanubolu JB, Reddy MS. A Sequential Activation of Alkyne and C–H Bonds for the Tandem Cyclization and Annulation of Alkynols and Maleimides through Cooperative Sc(III) and Cp*-Free Co(II) Catalysis. Org Lett 2020; 22:5326-5330. [DOI: 10.1021/acs.orglett.0c01533] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ravi Kumar Gurram
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Manda Rajesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | - Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
14
|
Mei R, Dhawa U, Samanta RC, Ma W, Wencel-Delord J, Ackermann L. Cobalt-Catalyzed Oxidative C-H Activation: Strategies and Concepts. CHEMSUSCHEM 2020; 13:3306-3356. [PMID: 32065843 DOI: 10.1002/cssc.202000024] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Inexpensive cobalt-catalyzed oxidative C-H functionalization has emerged as a powerful tool for the construction of C-C and C-Het bonds, which offers unique potential for transformative applications to modern organic synthesis. In the early stage, these transformations typically required stoichiometric and toxic transition metals as sacrificial oxidants; thus, the formation of metal-containing waste was inevitable. In contrast, naturally abundant molecular O2 has more recently been successfully employed as a green oxidant in cobalt catalysis, thus considerably improving the sustainability of such transformations. Recently, a significant momentum was gained by the use of electricity as a sustainable and environmentally benign redox reagent in cobalt-catalyzed C-H functionalization, thereby preventing the consumption of cost-intensive chemicals while at the same time addressing the considerable safety hazards related to the use of molecular oxygen in combination with flammable organic solvents. Considering the unparalleled potential of the aforementioned approaches for sustainable green synthesis, this Review summarizes the recent progress in cobalt-catalyzed oxidative C-H activation until early 2020.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, P. R. China
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM, 25 Rue Becquerel, 67087, Strasbourg, France
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100, Pavia, Italy
| |
Collapse
|
15
|
Zhai S, Qiu S, Chen L, Niu Y, Yu Y, Yang B, Zhang B, Han C, Yang L, Zhai H. Synthesis of cyclobutane-fused oxygen-containing tricyclic framework via thermally promoted intramolecular cycloaddition of cyclohexadienone-tethered allenes. Chem Commun (Camb) 2020; 56:3405-3408. [PMID: 32091059 DOI: 10.1039/d0cc00061b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a unique approach for the thermally promoted cycloaddition of cyclohexadienone-tethered allenes to form a versatile cyclobutane-fused oxygen-containing tricyclic framework in an environmentally friendly and atomic economic fashion with high regioselectivity. The reaction encompasses a broad substrate scope and functional group tolerance of cyclohexadienone moieties. Moreover, the cycloaddition was also applicable to the late-stage functionalization of pharmaceutically relevant compounds.
Collapse
Affiliation(s)
- Shengxian Zhai
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China and The State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China. and School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Coal Mine Safety of Henan Province, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Shuxian Qiu
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China. and Department of Chemistry, Guangdong University of Education, Guangzhou 510303, China
| | - Lunjian Chen
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Coal Mine Safety of Henan Province, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Yongsheng Niu
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Youzhu Yu
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Bo Yang
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Beining Zhang
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Chuchu Han
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Liguo Yang
- College of Chemistry & Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
16
|
Mei R, Fang X, He L, Sun J, Zou L, Ma W, Ackermann L. Cobaltaelectro-catalyzed oxidative allene annulation by electro-removable hydrazides. Chem Commun (Camb) 2020; 56:1393-1396. [PMID: 31912810 DOI: 10.1039/c9cc09076b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient C-H/N-H functionalization with allenes was enabled via versatile electro-oxidative cobalt catalysis. Thus, electrochemical C-H activations were accomplished with high levels of chemoselectivity and regioselectivity in an operationally simple undivided cell setup. The user-friendly nature of this protocol was highlighted by excellent functional group tolerance, an electro-reductive removable hydrazide directing group and easy scalability. Experimental mechanistic studies were indicative of a facile BIES C-H cobaltation event.
Collapse
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Liang He
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Junmei Sun
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.
| | - Liang Zou
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Lutz Ackermann
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany.
| |
Collapse
|
17
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 636] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
18
|
Kwak SH, Daugulis O. N-Iminopyridinium ylide-directed, cobalt-catalysed coupling of sp 2 C-H bonds with alkynes. Chem Commun (Camb) 2020; 56:11070-11073. [PMID: 32812560 DOI: 10.1039/d0cc05294a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-Iminopyridinium ylides are competent monodentate directing groups for cobalt-catalysed annulation of sp2 C-H bonds with internal alkynes. The pyridine moiety in the ylide serves as an internal oxidant and is cleaved during the reaction. The annulation reactions possess excellent compatibility with heterocyclic substrates, tolerating furan, thiophene, pyridine, pyrrole, pyrazole, and indole functionalities.
Collapse
Affiliation(s)
- Se Hun Kwak
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.
| |
Collapse
|
19
|
Sun R, Yang X, Li Q, Xu K, Tang J, Zheng X, Yuan M, Fu H, Li R, Chen H. Divergent Synthesis of Isoquinolone and Isocoumarin Derivatives by the Annulation of Benzoic Acid with N-Vinyl Amide. Org Lett 2019; 21:9425-9429. [DOI: 10.1021/acs.orglett.9b03638] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rui Sun
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qianggen Li
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Ke Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
20
|
Sagara PS, Siril PF, Ravikumar PC. N-Amino-7-azaindole as the N,N′-Bidentate Directing Group: Ruthenium-Catalyzed Oxidative Annulation of N-(7-Azaindole)benzamides with Alkynes via C–H Bond Activation. J Org Chem 2019; 84:12314-12323. [DOI: 10.1021/acs.joc.9b01598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Prateep Singh Sagara
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Prem Felix Siril
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Ponneri Chandrababu Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani Campus, Odisha 752050, India
| |
Collapse
|
21
|
Mei R, Ma W, Zhang Y, Guo X, Ackermann L. Cobaltaelectro-Catalyzed Oxidative C–H/N–H Activation with 1,3-Diynes by Electro-Removable Hydrazides. Org Lett 2019; 21:6534-6538. [DOI: 10.1021/acs.orglett.9b02463] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruhuai Mei
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, P. R. China
| | - Yin Zhang
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaoqiang Guo
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
22
|
Zhu H, Zhuang R, Zheng W, Fu L, Zhao Y, Tu L, Chai Y, Zeng L, Zhang C, Zhang J. Synthesis of isoquinolone via rhodium(III)-catalyzed C-H activation with 1,4,2-dioxazol-5-ones as oxidizing directing group. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Deshmukh DS, Gangwar N, Bhanage BM. Rapid and Atom Economic Synthesis of Isoquinolines and Isoquinolinones by C-H/N-N Activation Using a Homogeneous Recyclable Ruthenium Catalyst in PEG Media. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dewal S. Deshmukh
- Department of Chemistry; Institute of Chemical Technology; -400019 Mumbai India
| | - Neha Gangwar
- Department of Chemistry; Institute of Chemical Technology; -400019 Mumbai India
| | | |
Collapse
|
24
|
Omer H, Liu P. Computational Study of the Ni-Catalyzed C-H Oxidative Cycloaddition of Aromatic Amides with Alkynes. ACS OMEGA 2019; 4:5209-5220. [PMID: 31459693 PMCID: PMC6648058 DOI: 10.1021/acsomega.9b00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/01/2019] [Indexed: 06/10/2023]
Abstract
The mechanism of Ni-catalyzed ortho C(sp2)-H oxidative cycloaddition of aromatic amides with internal alkynes containing 2-pyridinylmethylamine directing group was investigated using density functional theory (DFT) calculations. The C-H cleavage step proceeds via σ-complex-assisted metathesis (σ-CAM) with an alkenyl-Ni(II) complex. This is in contrast to the more common carboxylate/carbonate-assisted concerted metalation-deprotonation mechanism in related Ni-catalyzed C-H bond functionalization reactions with N,N-bidentate directing groups. In this reaction, the alkyne not only serves as the coupling partner, but also facilitates the σ-CAM C-H metalation both kinetically and thermodynamically. The subsequent functionalization of the five-membered nickelacycle proceeds via alkyne insertion into the Ni-C bond to form a seven-membered nickelacycle. This process proceeds with high levels of regioselectivity to form a C-C bond with sterically more encumbered alkyne terminus. This unusual regioselectivity is due to steric repulsions with the directing group that is coplanar with the alkyne in the migratory insertion transition state. The C-N bond reductive elimination to form the isoquinolone cycloadduct is promoted by PPh3 complexation to the Ni center and the use of flexible 2-pyridinylmethylamine directing group. The origin of the cis-trans isomerism of alkene byproduct was also explained by computations.
Collapse
Affiliation(s)
- Humair
M. Omer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
25
|
Xie H, Xing Q, Shan Z, Xiao F, Deng G. Nickel‐Catalyzed Annulation of
o
‐Haloarylamidines with Aryl Acetylenes: Synthesis of Isoquinolone and 1‐Aminoisoquinoline Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hao Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Qiaoyan Xing
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Zhifei Shan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
26
|
Zhao H, Shao X, Qing Z, Wang T, Chen X, Yang H, Zhai H. Cobalt‐Catalyzed 2‐(1‐Methylhydrazinyl)pyridine‐Assisted Direct C−H/N−H Functionalization of Benzoyl Hydrazide with Isocyanide: Efficient Synthesis of Iminoisoindolinone Derivatives. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hua Zhao
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Xiaoru Shao
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Zhineng Qing
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Taimin Wang
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Xiaoming Chen
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Hongjian Yang
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyShenzhen Graduate School of Peking University Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 People's Republic of China
| |
Collapse
|
27
|
Chen C, Hao Y, Zhang TY, Pan JL, Ding J, Xiang HY, Wang M, Ding TM, Duan A, Zhang SY. Computational and experimental studies on copper-mediated selective cascade C-H/N-H annulation of electron-deficient acrylamide with arynes. Chem Commun (Camb) 2019; 55:755-758. [PMID: 30500009 DOI: 10.1039/c8cc08708c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient and convenient copper-mediated method has been developed to achieve direct cascade C-H/N-H annulation to synthesize 2-quinolinones from electron-deficient acrylamides and arynes. This method highlights an emerging but simple strategy to transform inert C-H bonds into versatile functional groups in organic synthesis to provide a new method of synthesizing 2-quinolinones efficiently. Mechanistic investigations by experimental and density functional theory (DFT) studies suggest that an organometallic C-H activation via a Cu(iii) intermediate is likely to be involved in the reaction.
Collapse
Affiliation(s)
- Chao Chen
- Sixth People's Hospital South Campus, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ma P, Chen H. Ligand-Dependent Multi-State Reactivity in Cobalt(III)-Catalyzed C–H Activations. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pengchen Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Lin C, Shen L. Co-catalyzed ortho-C–H functionalization/annulation of arenes and alkenes with alkynylsilanes: access to isoquinolone and pyridone motifs. RSC Adv 2019; 9:30650-30654. [PMID: 35529370 PMCID: PMC9072155 DOI: 10.1039/c9ra06963a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
A method for cobalt-catalyzed ortho-C–H functionalization annulation of arenes and alkenes with alkynylsilanes assisted by 8-aminoquinolyl auxiliary has been described. Alkynylsilanes were employed as the coupling partners to react with a broad range of benzamides and acrylamides, affording the corresponding isoquinolone and pyridone derivatives in moderate to high yields. It is worth noting that the silyl group in the final products can be retained or removed by switching the reaction conditions. A method for cobalt-catalyzed ortho-C–H functionalization annulation of arenes and alkenes with alkynylsilanes assisted by 8-aminoquinolyl auxiliary.![]()
Collapse
Affiliation(s)
- Cong Lin
- College of Chemistry and Chemical Engineering
- Jiangxi Science & Technology Normal University
- Nanchang 330013
- China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| | - Liang Shen
- College of Chemistry and Chemical Engineering
- Jiangxi Science & Technology Normal University
- Nanchang 330013
- China
- Jiangxi Engineering Laboratory of Waterborne Coatings
| |
Collapse
|
30
|
Qiu S, Zhai S, Wang H, Chen X, Zhai H. One-pot synthesis of benzo[b]fluorenones via a cobalt-catalyzed MHP-directed [3+2] annulation/ring-opening/dehydration sequence. Chem Commun (Camb) 2019; 55:4206-4209. [DOI: 10.1039/c9cc00948e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt-catalyzed MHP-directed [3+2] annulation of benzoyl hydrazines with oxabicyclic alkenes followed by a ring-opening/dehydration sequence is developed for the one-pot synthesis of benzo[b]fluorenones.
Collapse
Affiliation(s)
- Shuxian Qiu
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics
- Shenzhen Engineering Laboratory of Nano Drug Slow-Release
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Shengxian Zhai
- College of Chemistry & Environmental Engineering
- Anyang Institute of Technology
- Anyang 455000
- China
| | - Huifei Wang
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Xiaoming Chen
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics
- Shenzhen Engineering Laboratory of Nano Drug Slow-Release
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics
- Shenzhen Engineering Laboratory of Nano Drug Slow-Release
- Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| |
Collapse
|
31
|
Zhang W, Li H, Wang L. Cobalt‐Catalyzed Temperature‐Dependent Annulation of 3‐Aryl‐1,2,4‐oxadiazolones with 1,3‐Diynes: An Approach to π‐Conjugated Molecules. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenge Zhang
- Department of ChemistryHuaibei Normal University, Huaibei Anhui 235000 People's Republic of China
| | - Hongji Li
- Department of ChemistryHuaibei Normal University, Huaibei Anhui 235000 People's Republic of China
| | - Lei Wang
- Department of ChemistryHuaibei Normal University, Huaibei Anhui 235000 People's Republic of China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 People's Republic of China
| |
Collapse
|
32
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1517] [Impact Index Per Article: 216.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
33
|
Qiu S, Zhai S, Wang H, Tao C, Zhao H, Zhai H. Efficient Synthesis of Phthalimides via Cobalt-Catalyzed C(sp
2
)−H Carbonylation of Benzoyl Hydrazides with Carbon Monoxide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuxian Qiu
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Shengxian Zhai
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Huifei Wang
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Cheng Tao
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Hua Zhao
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin) China
| |
Collapse
|
34
|
Zhai S, Qiu S, Chen X, Tao C, Li Y, Cheng B, Wang H, Zhai H. Trifunctionalization of Allenes via Cobalt-Catalyzed MHP-Assisted C–H Bond Functionalization and Molecular Oxygen Activation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01720] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shengxian Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuxian Qiu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaoming Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Cheng Tao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bin Cheng
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Huifei Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
35
|
Mei R, Sauermann N, Oliveira JCA, Ackermann L. Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C–H/N–H Activation with Internal Alkynes. J Am Chem Soc 2018; 140:7913-7921. [DOI: 10.1021/jacs.8b03521] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ruhuai Mei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Nicolas Sauermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Department of Chemistry, University of Pavia, Viale Taramelli, 10, 27100 Pavia, Italy
- International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-Universität Göttingen, Tammannstraße 6, 37077, Göttingen, Germany
| |
Collapse
|
36
|
Li JM, Yu Y, Weng J, Lu G. Nickel-catalyzed direct C–H bond sulfenylation of acylhydrazines. Org Biomol Chem 2018; 16:6047-6056. [DOI: 10.1039/c8ob01481g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient Ni-catalyzed direct C–H bond sulfenylation of acylhydrazines for the synthesis of diverse diaryl sulfides.
Collapse
Affiliation(s)
- Jun-Ming Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| |
Collapse
|
37
|
Zhao H, Shao X, Wang T, Zhai S, Qiu S, Tao C, Wang H, Zhai H. A 2-(1-methylhydrazinyl)pyridine-directed C–H functionalization/spirocyclization cascade: facile access to spirosuccinimide derivatives. Chem Commun (Camb) 2018; 54:4927-4930. [DOI: 10.1039/c8cc01774c] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cobalt-catalyzed oxidative coupling of benzoic hydrazides with maleimides by utilizing 2-(1-methylhydrazinyl)pyridine as a bidentate directing group has been developed.
Collapse
Affiliation(s)
- Hua Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Xiaoru Shao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Taimin Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Shengxian Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
| | - Shuxian Qiu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Cheng Tao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
| | - Huifei Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University
- Shenzhen 518055
- China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
| |
Collapse
|