1
|
Liu L, Zhang L, Liang Y. Visual sensing of multiple proteins based on three kinds of metal nanoparticles as sensor receptors. Colloids Surf B Biointerfaces 2021; 200:111574. [PMID: 33476955 DOI: 10.1016/j.colsurfb.2021.111574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/28/2022]
Abstract
We propose a colorimetric sensing array consisting of 4-aminothiophenol (p-ATP)-modified gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), and core-shell Au@Ag nanocubes (Au@Ag NCs) as sensing elements to identify multiple proteins according to the diverse colorimetric response patterns. In the absence of proteins, the sensor element solution itself did not agglomerate. After interacting with six proteins (lysozyme (LZM), hemoglobin (HGB), peroxidase from horseradish (HRP), bovine liver from peroxidase (CAT), trypsin from bovin pancreas (TRY), and pepsin (PEP)), due to the different binding ability between the sensing elements and various proteins, the sensing array exhibits a unique pattern of colorimetric variations, linear discrimination analysis (LDA) was applied to analyze the pattern and produced a clustering map for a clearer differentiation of these proteins.
Collapse
Affiliation(s)
- Lei Liu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Liguo Zhang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Wastewater Management and Treatment, Guangzhou, 510006, China.
| | - Yong Liang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Huang Z, Li Z, Jiang M, Liu R, Lv Y. Homogeneous Multiplex Immunoassay for One-Step Pancreatic Cancer Biomarker Evaluation. Anal Chem 2020; 92:16105-16112. [DOI: 10.1021/acs.analchem.0c03780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ziyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Min Jiang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Sensitive Colorimetric Detection of Prostate Specific Antigen Using a Peroxidase-Mimicking Anti-PSA Antibody Coated Au Nanoparticle. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-019-4204-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Affiliation(s)
- Abby Jones
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Lasangi Dhanapala
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Rumasha N. T. Kankanamage
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Challa V. Kumar
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, Connecticut 06232, United States
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland H91 TK33
| |
Collapse
|
5
|
Fang Z, Liu L, Wang Y, Xi D, Zhang S. Unambiguous Discrimination of Multiple Protein Biomarkers by Nanopore Sensing with Double-Stranded DNA-Based Probes. Anal Chem 2019; 92:1730-1737. [DOI: 10.1021/acs.analchem.9b02965] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Fang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P.R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Liping Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P.R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Dongmei Xi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P.R. China
| |
Collapse
|
6
|
Hahn J, Kim E, You Y, Choi YJ. Colorimetric switchable linker-based bioassay for ultrasensitive detection of prostate-specific antigen as a cancer biomarker. Analyst 2019; 144:4439-4446. [PMID: 31218301 DOI: 10.1039/c9an00552h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of colorimetric bioassays for protein detection is one of the most interesting diagnostic approaches, but their relatively poor detection limits have been a critical issue. In this study, we developed an efficient colorimetric bioassay based on switchable linkers (SLs) for the detection of prostate-specific antigen (PSA), which is one of the most widely used protein biomarkers for the diagnosis of prostate and breast cancers. SLs can cross-link gold nanoparticles (AuNPs) to generate large-scale aggregates and thereby induce precipitation to achieve visual signal amplification. In addition, when SLs are occupied by target proteins (referred to as 'switch-off'), highly sensitive detection is enabled. To maximize sensitivity, we adjusted the total surface area of AuNPs by controlling their concentration. As a result, PSA was detected at an ultralow concentration of 100 fg mL-1. This SL-based assay is shown to be simple, easy to handle and visualize, and highly sensitive. Therefore, in addition to PSA, the proposed SL-based assay could be used to detect other protein biomarkers.
Collapse
Affiliation(s)
- Jungwoo Hahn
- Department of Agricultural Biotechnology, Seoul National University, 1 Gwanakro, Gwanakgu, Seoul 151-921, Korea.
| | | | | | | |
Collapse
|
7
|
Jung Y, Lee CY, Park KS, Park HG. Target-Activated DNA Polymerase Activity for Sensitive RNase H Activity Assay. Biotechnol J 2019; 14:e1800645. [PMID: 30791223 DOI: 10.1002/biot.201800645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Herein, the ribonuclease H (RNase H) activity assay based on the target-activated DNA polymerase activity is described. In this method, a detection probe composed of two functional sequences, a binding site for DNA polymerase and a catalytic substrate for RNase H, serves as a key component. The detection probe, at its initial state, suppresses the DNA polymerase activity, but it becomes destabilized by RNase H, which specifically hydrolyzes RNA in RNA/DNA hybrid duplexes. As a result, DNA polymerase recovers its activity and initiates multiple primer extension reactions in a separate TaqMan probe-based signal transduction module, leading to a significantly enhanced fluorescence "turn-on" signal. This assay can detect RNase H activity as low as 0.016 U mL-1 under optimized conditions. Furthermore, its potential use for evaluating RNase H inhibitors, which have been considered potential therapeutic agents against acquired immune deficiency syndrome (AIDS), is successfully explored. In summary, this approach is quite promising for the sensitive and accurate determination of enzyme activity and inhibitor screening.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chang Y Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ki S Park
- Department of Biological Engineering, College of Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyun G Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Zhang Y, Mao J, Ji W, Feng T, Fu Z, Zhang M, Mao L. Collision of Aptamer/Pt Nanoparticles Enables Label-Free Amperometric Detection of Protein in Rat Brain. Anal Chem 2019; 91:5654-5659. [PMID: 30888153 DOI: 10.1021/acs.analchem.8b05457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single particle collision is emerging as a powerful and sensitive technique for analyzing small molecules, however, its application in biomacromolecules detection, for example, protein, in complex biological environments is still challenging. Here, we present the first demonstration on the single particle collision that can be developed for the detection of platelet-derived growth factor (PDGF), an important protein involved in the central nervous system in living rat brain. The system features Pt nanoparticles (PtNPs) conjugated with the PDGF recognition aptamer, suppressing the electrocatalytic collision of PtNPs toward the oxidation of hydrazine. In the presence of PDGF, the stronger binding between targeted protein and the aptamer disrupts the aptamer/PtNPs conjugates, recovering the electrocatalytic performance of PtNPs, and allowing quantitative, selective, and highly sensitive detection of PDGF in cerebrospinal fluid of rat brain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jinpeng Mao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Wenliang Ji
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Taotao Feng
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Zixuan Fu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Meining Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , The Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
9
|
Wang HB, Bai HY, Dong GL, Liu YM. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection. NANOSCALE ADVANCES 2019; 1:1482-1488. [PMID: 36132614 PMCID: PMC9419426 DOI: 10.1039/c8na00278a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
In this paper, the fluorescence signal of poly(A) DNA-templated Au nanoclusters (AuNCs) is found to be greatly quenched by photoinduced electron transfer (PET) when they are close to guanine (G)-rich DNA. Based on the findings, we have designed a low-cost fluorescence biosensing strategy for the sensitive detection of DNA. Highly luminescent and photo-stable poly(A) DNA-AuNCs were utilized as the fluorescent indicator and G-rich DNA was utilized as the fluorescent quencher. In the absence of target DNA, DNA-AuNCs failed to hybridize with the G-rich DNA and did not form the duplex DNA structure. Strong fluorescence intensity at 475 nm was observed due to the DNA-AuNCs being far away from the G-rich DNA. However, in the presence of target DNA, the DNA-AuNCs together with G-rich DNA could hybridize with the target DNA, leading to the 5' terminus of the DNA-AuNCs and the 3' terminus of G-rich DNA being in close proximity and promoting the cooperative hybridization. Therefore, a "Y" junction structure was formed and the G-rich sequences were brought close to the AuNCs. Therefore, the fluorescence intensity of the sensing system decreased significantly. Taking advantage of the poly(A) DNA-templated Au nanoclusters and G-rich DNA proximity-induced quenching, the strategy could be extended to determine other biomolecules by designing appropriate sequences of DNA probes.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Gao-Li Dong
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| |
Collapse
|
10
|
Hu F, Xu J, Chen Y. Sensing ultra-trace dopamine by restoration of fluorescence on locally acidified gold nanoparticles. Analyst 2019; 144:4477-4482. [DOI: 10.1039/c9an00712a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultra-sensitive sensor was fabricated to measure dopamine through quenching and restoring FITC fluorescence by the competitive binding of dopamine andN-acetylneuraminic acid with mercaptophenylboronic acid anchored on the gold nanoparticles.
Collapse
Affiliation(s)
- Feichi Hu
- A Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Jiying Xu
- A Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yi Chen
- A Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
11
|
Xu J, Fang L, Shi M, Huang Y, Yao L, Zhao S, Zhang L, Liang H. A peptide-based four-color fluorescent polydopamine nanoprobe for multiplexed sensing and imaging of proteases in living cells. Chem Commun (Camb) 2019; 55:1651-1654. [DOI: 10.1039/c8cc09359h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel peptide-based four-color fluorescent polydopamine nanoprobe has been developed for multiplexed sensing and imaging of tumor-related proteases in living cells. This nanoprobe responds rapidly and selectively, enabling accurate differentiation between cancer cells and normal cells.
Collapse
Affiliation(s)
- Jiayao Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lina Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Ming Shi
- Department of Chemistry and Pharmacy
- Guilin Normal College
- Guilin
- China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Lifang Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- College of Chemistry and Pharmacy
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
12
|
Zhai R, Gong X, Xie J, Yuan Y, Xu F, Jiang Y, Huang Z, Dai X, Zhang Y, Qian X, Fang X. Ultrasensitive analysis of heat shock protein 90α with antibodies orderly arrayed on a novel type of immunoprobe based on magnetic COFs. Talanta 2018; 191:553-560. [PMID: 30262098 DOI: 10.1016/j.talanta.2018.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
The early diagnosis of liver cancer by target biomarkers is of great significance for improving the survival rate of cancer patients. However, it is still a challenging task to sensitively detect circulating protein biomarkers due to decreased binding activity of antibodies originating from uncontrolled orientation of immobilization on the surface of a solid matrix. In this work, a novel immunoaffinity probe, Fe3O4@TpBD-DSS-Ab-MEG, based on magnetic COFs with ordered arrangement of anchored antibodies has been developed and applied for the first time to detection of a cancer biomarker, heat shock protein 90alpha (Hsp90α). The fabricated composites possess favorable features from magnetic cores and COF shells, including strong magnetic responses (7.96 emu g-1), ordered active groups, a large amount of immobilized antibodies (111.7 μg/mg), good solvent and thermal stability. Fe3O4@TpBD-DSS-Ab-MEG demonstrated low detection limit (50 pg/mL), high selectivity (Hsp90α:BSA = 1:1000), desirable repeatability and good stability for Hsp90α immunocapture. Compared with other immunoprobes, our materials showed higher selectivity and sensitivity, which were mainly attributed to regular arrays of surface antibodies. Furthermore, samples containing Hsp90α at the concentration of 1 µg/mL in human plasma were used to test our immunoprobe, and 2 peptides of Hsp90α were successfully observed. The proposed non-invasive immunoassay strategy offers enhanced ability to control the orientation of immobilized antibodies and great promise for accurate analysis of the liver cancer biomarker Hsp90α in a complicated biological matrix. In addition, the facile preparation of magnetic COFs support and the satisfactory analytical performance made the newly developed immunoprobe a potential tool for sensitive detection of other cancer biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Jie Xie
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Yifeng Yuan
- Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China
| | - Fei Xu
- Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Zejian Huang
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing, Beijing Institute of Radiation Medicine, Beijing 102200, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing, Beijing Institute of Radiation Medicine, Beijing 102200, China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China.
| |
Collapse
|
13
|
Yu Z, Cai G, Ren R, Tang D. A new enzyme immunoassay for alpha-fetoprotein in a separate setup coupling an aluminium/Prussian blue-based self-powered electrochromic display with a digital multimeter readout. Analyst 2018; 143:2992-2996. [DOI: 10.1039/c8an00839f] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new immunoassay was designed for the detection of disease-related biomarkers (alpha-fetoprotein, AFP, as a model), coupling an aluminium (Al)/Prussian blue-based electrochromic display with a digital multimeter readout.
Collapse
Affiliation(s)
- Zhenzhong Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department
- Fuzhou University
- Fuzhou 350116
| | - Guoneng Cai
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department
- Fuzhou University
- Fuzhou 350116
| | - Rongrong Ren
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department
- Fuzhou University
- Fuzhou 350116
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province)
- State Key Laboratory of Photocatalysis on Energy and Environment
- Department
- Fuzhou University
- Fuzhou 350116
| |
Collapse
|
14
|
Yang W, Shen Y, Zhang D, Xu W. Protein-responsive rolling circle amplification as a tandem template to drive amplified transduction of fluorescence signal probes for highly sensitive immunoassay. Chem Commun (Camb) 2018; 54:10195-10198. [DOI: 10.1039/c8cc04395g] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A protein-responsive fluorescence immunosensor is reported based on proximity ligation-initiated rolling circle amplification as tandem template to drive output switch of signal probes.
Collapse
Affiliation(s)
- Wenting Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yu Shen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Danyang Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|