1
|
Grinde NA, Kehoe ZR, Vang HG, Mancheski LJ, Bosch E, Southern SA, Bryce DL, Bowling NP. Rapid Access to Encapsulated Molecular Rotors via Coordination-Driven Macrocycle Formation. Chemistry 2023; 29:e202301745. [PMID: 37308699 DOI: 10.1002/chem.202301745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Macrocycle formation that relies upon trans metal coordination of appropriately placed pyridine ligands within an arylene ethynylene construct provides rapid and reliable access to molecular rotators encapsulated within macrocyclic stators. Showing no significant close contacts to the central rotators, X-ray crystallography of AgI -coordinated macrocycles provides plausibility for unobstructed rotation or wobbling of rotators within the central cavity. Solid-state 13 C NMR of PdII -coordinated macrocycles supports the notion of unobstructed movement of simple arenes in the crystal lattice. Solution 1 H NMR studies indicate complete and immediate macrocycle formation upon the introduction of PdII to the pyridyl-based ligand at room temperature. Moreover, the formed macrocycle is stable in solution; a lack of significant changes in the 1 H NMR spectrum upon cooling to -50 °C is consistent with the absence of dynamic behavior. The synthetic route to these macrocycles is expedient and modular, providing access to rather complex constructs in four simple steps involving Sonogashira coupling and deprotection reactions.
Collapse
Affiliation(s)
- Noah A Grinde
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Zachary R Kehoe
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Herh G Vang
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Lucas J Mancheski
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| | - Eric Bosch
- Chemistry and Biochemistry Department, Missouri State University, 901 South National Avenue, Springfield, MO, 65897, USA
| | - Scott A Southern
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nathan P Bowling
- Chemistry Department, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI, 54481, USA
| |
Collapse
|
2
|
Katoono R, Arisawa K. Two-ring chirality generated by the alignment of two achiral phenylacetylene macrocycles. RSC Adv 2023; 13:11712-11719. [PMID: 37063719 PMCID: PMC10102884 DOI: 10.1039/d3ra01780j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
When two achiral rings are bound mechanically, a chiral source is generated in the assembly. The chiroptical properties could be modulated according to the relative occupation of each ring in the assembly. In fact, we have found that two isomeric assemblies (1 and 2) show unique properties in each assembly with two achiral rings of phenylacetylene macrocycle (PAM). When considering the difference in the chiroptical properties of these two isomeric assemblies (6PAM × 2), no comparison was available based on no activity of the achiral component element itself (6PAM). In this work, we synthesized a two-ring chiral analog (4) by the ring-fusion of two 6PAMs to an 11PAM, and examined the chiroptical properties of 4, since the single helix was imparted as a chiral source. By comparison of the chiroptical properties (molar circular dichroism and molar optical rotation) of 1 and 2 to those of 4, we demonstrated that the disparity was related to the alignment of the two achiral rings.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060-0810 Japan +81-11-706-4616
| | - Kohei Arisawa
- Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060-0810 Japan +81-11-706-4616
| |
Collapse
|
3
|
Katoono R, Tanioka T. A Dualistic Arrangement of a Chiral [1]Rotaxane Based on the Assembly of Two Rings and Two Rods. J Org Chem 2023; 88:4606-4618. [PMID: 36972424 DOI: 10.1021/acs.joc.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We demonstrate the synthesis and chiroptical properties of doubled molecules of a chiral [1]rotaxane, based on the assembly of an achiral ring of a phenylacetylene macrocycle (6PAM) and a p-phenylene ethynylene rod. Two molecules of [1]rotaxane constituted the doubled molecule through the ring fusion of 6PAMs to a 10PAM, which assured stationary occupation relative to each optically active unit. The absorption properties of the 10PAM-based doubled molecule and 6PAM-based original unit were consistently characterized by the independent existence of m-phenylene ethynylene ring(s) and p-phenylene ethynylene rod(s). Thus, molar circular dichroism (CD) was directly compared between the doubled molecule (n = 2) and the original unit (n = 1) to show that molar CD was increased more than expected by an increase in the number of units, or by an increase in absorbance. Due to the invariance of the configuration and the relative occupation of two units arranged adjacent to each other in 10PAM, one more comparison was available with an isomeric molecule of two rings and two rods in a threaded-and-unthreaded form. The additional arrangement of an optically inactive unit in an unthreaded form also led to an increase in molar CD, compared to that of the original chiral unit in a threaded form.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takumi Tanioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Morise T, Muranaka A, Ban H, Harada M, Naito M, Yoshida K, Kobayashi N, Uchiyama M, Tokunaga Y. A Chiral [3]Rotaxane Comprising Achiral Bis-macrocyclic and Dumbbell-Shaped Components. Org Lett 2021; 23:2120-2124. [PMID: 33689384 DOI: 10.1021/acs.orglett.1c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study, we synthesized a molecularly chiral [3]rotaxane comprising a calix-bis-crown ether (as the macrocyclic component) and two unsymmetrical dialkylammonium salts (as dumbbell-shaped components) without any chirality in any of the individual components. Chiral high-performance liquid chromatography was used to separate the enantiomers, which were characterized by circular dichroism spectroscopy. Density functional theory calculations gave an insight into the absolute configuration of each [3]rotaxane.
Collapse
Affiliation(s)
- Takaaki Morise
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Atsuya Muranaka
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Hayato Ban
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Mei Harada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Naito
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Kazuyuki Yoshida
- Forensic Science Laboratory, Fukui Prefectural Police Headquarters, Ohte, Fukui 910-8515, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Tokida, Ueda, Nagano 386-8567, Japan
| | - Masanobu Uchiyama
- Elements Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
5
|
Miki K, Noda T, Gon M, Tanaka K, Chujo Y, Mizuhata Y, Tokitoh N, Ohe K. Near‐Infrared Circularly Polarized Luminescence through Intramolecular Excimer Formation of Oligo(
p
‐phenyleneethynylene)‐Based Double Helicates. Chemistry 2019; 25:9211-9216. [DOI: 10.1002/chem.201901467] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku, Kyoto 615–8510 Japan
| | - Takeru Noda
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku, Kyoto 615–8510 Japan
| | - Masayuki Gon
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku, Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku, Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku, Kyoto 615-8510 Japan
| | - Yoshiyuki Mizuhata
- Institute for Chemical ResearchKyoto University Gokasho Uji, Kyoto 611-0011 Japan
| | - Norihiro Tokitoh
- Institute for Chemical ResearchKyoto University Gokasho Uji, Kyoto 611-0011 Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku, Kyoto 615–8510 Japan
| |
Collapse
|
6
|
Huan J, Zhang X, Zeng Q. Two-dimensional supramolecular crystal engineering: chirality manipulation. Phys Chem Chem Phys 2019; 21:11537-11553. [PMID: 31115407 DOI: 10.1039/c9cp02207d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two dimensional (2D) supramolecular crystal engineering, one of the most important strategies towards nanotechnology, is both a science and an industry. In the present review, the recent advances in 2D supramolecular crystal engineering through chirality manipulation on solid surfaces are summarized, with the aid of the scanning tunneling microscopy technique. On-surface chirality manipulation includes surface confined structural chirality formation, chirality transformation, chirality separation as well as chirality elimination, by using component exchange and different external stimuli. Under this principle, host-guest supramolecular interactions, solvent induction, temperature regulation and STM-tip driven orientation control and reorientation effects under equilibrium or out-of-equilibrium conditions, towards the generation of the best-adapted chiral or achiral 2D nanostructures, are mainly described and highlighted. Future challenges and opportunities in this exciting area are also then discussed.
Collapse
Affiliation(s)
- Jinwen Huan
- Business School of Hohai University, #8 West Focheng Road, Jiangning District, Nanjing, Jiangsu 210098, P. R. China
| | | | | |
Collapse
|
7
|
Katoono R, Kusaka K, Saito Y, Sakamoto K, Suzuki T. Chiral diversification through the assembly of achiral phenylacetylene macrocycles with a two-fold bridge. Chem Sci 2019; 10:4782-4791. [PMID: 31160955 PMCID: PMC6510063 DOI: 10.1039/c9sc00972h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022] Open
Abstract
We demonstrate so-called "chiral diversification", which is a design strategy to create multiple chiral molecules through the assembly and double-bridging of achiral components. We used phenylacetylene macrocycles (PAMs) as an achiral element. In a molecule, two achiral rings of [6]PAM are stacked one above the other, or bound to each other mechanically. As an alternative, a single enlarged ring of [12]PAM was also assumed to be a doubled form of [6]PAM. In any case, one or two ring(s) are doubly-bridged by covalent bonds to exert chirality. Through intramolecular two-bond formation, these multiple chiral molecules were obtained as a set of products in one reaction. The dynamic chirality generated in molecules with either two helically-stacked rings of [6]PAM or a single helically-folded ring of [12]PAM was characterized by induced Cotton effects with the aid of an external chiral source. Thus, a chiral structure based on [12]PAM could be demonstrated as the first success. Alternatively, enantiomeric separation was achieved for molecules with two interlocked rings of [6]PAM to show remarkable chiroptical properties.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Keiichi Kusaka
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Yuki Saito
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Kazuki Sakamoto
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| | - Takanori Suzuki
- Department of Chemistry , Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan . ; ; Tel: +81 11 706-3396
| |
Collapse
|