1
|
Liang SS, Zhou Q, Wu PX, Huang XM, Shu MP, Zhu XM, Xu L, Wang GW. Copper-Mediated Three-Component Synthesis of Diverse Perfluoroalkylated Fullerenes. J Org Chem 2025; 90:2022-2035. [PMID: 39873249 DOI: 10.1021/acs.joc.4c02753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The synthesis of perfluoroalkylated fullerenes (PFAFs) holds significant importance due to their enhanced molecular stability, increased lipophilicity, and high electron affinity. Herein, we report a copper-catalyzed multicomponent reaction conducted under aerobic conditions, which enables the production of highly soluble PFAFs with half-wave reduction potentials similar to those of C60. Furthermore, the challenges posed by C-F coupling in carbon signal assignment were addressed through fluorine-decoupled carbon spectroscopy, facilitating precise structural characterization of the perfluoroalkyl moieties.
Collapse
Affiliation(s)
- Si-Si Liang
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Qian Zhou
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Pei-Xi Wu
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Xiao-Man Huang
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Meng-Ping Shu
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Xiao-Ming Zhu
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Liang Xu
- College of Chemistry and Material Science, Hengyang Normal University, Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Province College, Hengyang, Hunan 421008, P. R. China
| | - Guan-Wu Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
2
|
Iorkula TH, Jude-Kelly Osayawe O, Odogwu DA, Ganiyu LO, Faderin E, Awoyemi RF, Akodu BO, Ifijen IH, Aworinde OR, Agyemang P, Onyinyechi OL. Advances in pyrazolo[1,5- a]pyrimidines: synthesis and their role as protein kinase inhibitors in cancer treatment. RSC Adv 2025; 15:3756-3828. [PMID: 39911541 PMCID: PMC11795850 DOI: 10.1039/d4ra07556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
Pyrazolo[1,5-a]pyrimidines are a notable class of heterocyclic compounds with potent protein kinase inhibitor (PKI) activity, playing a critical role in targeted cancer therapy. Protein kinases, key regulators in cellular signalling, are frequently disrupted in cancers, making them important targets for small-molecule inhibitors. This review explores recent advances in pyrazolo[1,5-a]pyrimidine synthesis and their application as PKIs, with emphasis on inhibiting kinases such as CK2, EGFR, B-Raf, MEK, PDE4, BCL6, DRAK1, CDK1 and CDK2, Pim-1, among others. Several synthetic strategies have been developed for the efficient synthesis of pyrazolo[1,5-a]pyrimidines, including cyclization, condensation, three-component reactions, microwave-assisted methods, and green chemistry approaches. Palladium-catalyzed cross-coupling and click chemistry have enabled the introduction of diverse functional groups, enhancing the biological activity and structural diversity of these compounds. Structure-activity relationship (SAR) studies highlight the influence of substituent patterns on their pharmacological properties. Pyrazolo[1,5-a]pyrimidines act as ATP-competitive and allosteric inhibitors of protein kinases, with EGFR-targeting derivatives showing promise in non-small cell lung cancer (NSCLC) treatment. Their inhibitory effects on B-Raf and MEK kinases are particularly relevant in melanoma. Biological evaluations, including in vitro and in vivo studies, have demonstrated their cytotoxicity, kinase selectivity, and antiproliferative effects. Despite these advances, challenges such as drug resistance, off-target effects, and toxicity persist. Future research will focus on optimizing synthetic approaches, improving drug selectivity, and enhancing bioavailability to increase clinical efficacy.
Collapse
Affiliation(s)
- Terungwa H Iorkula
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Daniel A Odogwu
- Department of Chemistry and Biochemistry, Brigham Young University Provo Utah USA
| | | | - Emmanuel Faderin
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | - Busayo Odunayo Akodu
- Department of Pharmaceutical Sciences, Southern Illinois University 1Harirpin Dr Edwardsville IL 62026 USA
| | | | | | - Peter Agyemang
- Department of Chemistry, Michigan Technological University 1400 Townsend Dr Houghton MI 49931 USA
| | | |
Collapse
|
3
|
Han W, Ren YY, Tang MY, Ji YF, Ge D, Ma M, Shen ZL, Chu XQ. Combining (CH 2O) n and (NH 4) 2CO 3 as a Formamidine Equivalent for "Four-in-One" Synthesis of Fluoroalkylated 2- H-Pyrimidines. Org Lett 2024; 26:7078-7082. [PMID: 39119970 DOI: 10.1021/acs.orglett.4c02785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Multicomponent reactions hold the potential to maximize the synthetic efficiency in the preparation of diverse and complex molecular scaffolds. An unprecedented formal [3+1+1+1] annulation approach for the one-step synthesis of fluoroalkylated 2-H-pyrimidines commencing from perfluoroalkyl alkenes, paraformaldehyde, and ammonium carbonate is described. By harnessing readily accessible (CH2O)n and cheap (NH4)2CO3 as a formamidine surrogate, this method effectively replaces traditionally preformed amidines with a pyrimidine assembly. The multicomponent reaction proceeds in a step-economical, operationally simple, metal-free, and additive-free manner, featuring a broad substrate scope, excellent functional group compatibility, and scalability. The potential for the synthetic elaboration of the obtained 2-H-pyrimidine is further demonstrated in the alkylation and vinylation of its C2 position.
Collapse
Affiliation(s)
- Wei Han
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan-Yuan Ren
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming-Yao Tang
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi-Fan Ji
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Ji WJ, Han W, Ren YY, Ma M, Shen ZL, Chu XQ. Silver-Promoted Three-Component Synthesis of Perfluoroalkenyl Pyrroles through Partial Defluorinative Functionalization of Perfluoroalkyl Halides. Org Lett 2024; 26:6197-6202. [PMID: 39004858 DOI: 10.1021/acs.orglett.4c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
A silver-promoted three-component heterocyclization of alkynes, perfluoroalkyl halides, and 1,3-dinucleophiles was developed for the efficient synthesis of privileged (E)-perfluoroalkenyl pyrroles. The reaction proceeded through a rationally designed sequence of radical perfluoroalkylation and intramolecular defluorinative [3 + 2]-heterocyclization. The utility of perfluoroalkyl halide as a perfluoroalkenyl reagent, by selective and controllable functionalization of two inert C(sp3)-F bonds at vicinal carbon centers on the perfluoroalkyl chain, provides a new reaction mode for the synthesis of value-added organofluorides starting from the easily available and low-cost fluorinated feedstock.
Collapse
Affiliation(s)
- Wen-Jun Ji
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Wei Han
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Yuan-Yuan Ren
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, People's Republic of China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| |
Collapse
|
5
|
Zuo Y, Zuo P, Liu M, Wang X, Du J, Li X, Zhang P, Xu Z. Recent approaches for the synthesis of heterocycles from amidines via a metal catalyzed C-H functionalization reaction. Org Biomol Chem 2024; 22:5014-5031. [PMID: 38831700 DOI: 10.1039/d4ob00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Transition metal catalyzed C-H bond activation has become one of the most important tools for constructing new chemical bonds. Introducing directing groups to the substrates is the key to a successful reaction, these directing groups can also be further transformed in the reaction. Amidines with their unique structure and reactivity are ideal substrates for transition metal-catalyzed C-H transformations. This review describes the major advances and mechanistic investigations of the C-H activation/annulation tandem reactions of amidines until early 2024, focusing on metal-catalyzed C-H activation of amidines with unsaturated compounds, such as alkynes, ketone, vinylene carbonate, cyclopropanols and their derivatives. Meanwhile this manuscript also explores the reaction of amidines with different carbene precursors, for example diazo compounds, azide, triazoles, pyriodotriazoles, and sulfoxonium ylides as well as their own C-H bond activation/cyclization reactions. A bright outlook is provided at the end of the manuscript.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pengfei Zuo
- Kunshan Customs, Kunshan, Jiangsu 215300, People's Republic of China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoling Li
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Pinghua Zhang
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| |
Collapse
|
6
|
Liu Q, Liu M, Wang W. Recent progress of the synthesis methods of homo-trisubstituted pyrimidines compounds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
7
|
Mao K, Lv L, Li Z. Amine-Induced Selective C-C Bond Cleavage of 2,2,2-Trifluoroethyl Carbonyls for the Synthesis of Ureas and Amides. J Org Chem 2023. [PMID: 37437158 DOI: 10.1021/acs.joc.3c00979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
An efficient and selective transformation of 2,2,2-trifluoroethyl carbonyls into ureas/amides with amines is reported. This protocol allows the selective cleavage of the C-C bond of 2,2,2-trifluoroethyl carbonyls under transition metal-free and oxidant-free conditions, which is in contrast to the analogous C-F or C-CF3 bond functionalization. This reaction reveals the unexplored reactivity of 2,2,2-trifluoroethyl carbonyls and exhibits a broad substrate range and good functional group tolerance.
Collapse
Affiliation(s)
- Kuantao Mao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
8
|
Wu Q, Li L, Xu B, Sun J, Ji D, Li Y, Shen L, Fang Z, Duan J, Chen B, Guo K. Iron-catalyzed [4 + 2] annulation of amidines with α,β-unsaturated ketoxime acetates toward 2,4,6-trisubstituted pyrimidines. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
9
|
Anjirwala SN, Parmar PS, Patel SK. Synthetic protocols for non-fused pyrimidines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2137682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
| | - Parnas S. Parmar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Saurabh K. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| |
Collapse
|
10
|
Guo K, Xu G, Wang X, Jia C, Yan H, Zhang S, Wu Q, Zhu N, Fang Z, Duan J. Synthesis of 2,4,6‐Trisubstituted Pyrimidines via Iron‐Catalyzed Homocoupling of α,β‐Unsaturated Ketoximes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Guo
- Nanjing Tech University CHINA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Yan L, Zhang X, Xiang F, Li X, Li S, Song X. Tandem [3 + 1 + 1 + 1] Heterocyclization of α‐Acyl Ketene Dithioacetals with Ammonia and Methanol: Rapid Assembly of Polysubstituted Pyrimidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youkun Wang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Linlin Yan
- Hebei Chemical and Pharmaceutical College Department of Pharmaceutical Engineering 88 Fangxing Road 050026 Shijiazhuang CHINA
| | - Xiaoxuan Zhang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Fengrui Xiang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Xiaojun Li
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Shengnan Li
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Xiaoning Song
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| |
Collapse
|
12
|
Li J, Li J, He R, Liu J, Liu Y, Chen L, Huang Y, Li Y. Selective Synthesis of Substituted Pyridines and Pyrimidines through Cascade Annulation of Isopropene Derivatives. Org Lett 2022; 24:1620-1625. [PMID: 35194989 DOI: 10.1021/acs.orglett.2c00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diverse substituted pyridines and pyrimidines with high selectivity were obtained using a concise and efficient protocol developed herein. The reaction proceeds via metal-free cascade annulation of isopropene derivatives. Using isopropene derivatives as C3 synthons, NH4I as the "N" source, and formaldehyde or dimethyl sulfoxide as the carbon source, this reaction realizes the efficient formation of intermolecular C-N and C-C bonds.
Collapse
Affiliation(s)
- Jian Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jiaming Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Runfa He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Jiasheng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yang Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Lu Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong Province 529090, China
| |
Collapse
|
13
|
Bhurta D, Bharate SB. Styryl Group, a Friend or Foe in Medicinal Chemistry. ChemMedChem 2022; 17:e202100706. [PMID: 35166041 DOI: 10.1002/cmdc.202100706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/12/2022] [Indexed: 11/10/2022]
Abstract
The styryl (Ph-CH=CH-R) group is widely represented in medicinally important compounds, including drugs, clinical candidates, and molecular probes as it positively impacts the lipophilicity, oral absorption, and biological activity. The analysis of matched molecular pairs (styryl vs. phenethyl, phenyl, methyl, H) for the biological activity indicates the superiority aspect of styryl compounds. However, the Michael acceptor site in the styryl group makes it amenable to the nucleophilic attack by biological nucleophiles and transformation to the toxic metabolites. One of the downsides of styryl compounds is isomerization that impacts the molecular conformation and directly affects biological activity. The impact of cis-trans isomerism and isosteric replacements on biological activity is exemplified. We also discuss the styryl group-bearing drugs, clinical candidates, and fluorescent probes. Overall, the present review reveals the utility of the styryl group in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Deendyal Bhurta
- Council of Scientific & Industrial Research Indian Institute of Integrative Medicine, Natural Products and medicinal chemistry, 180001, Jammu, INDIA
| | - Sandip Bibishan Bharate
- Indian Institute of Integrative Medicine CSIR, Natural Products & Medicinal Chemistry, Canal Road, 180001, Jammu, INDIA
| |
Collapse
|
14
|
Cobalt-catalyzed cross-coupling of nitrogen-containing heterocyclic phosphonium salts with arylmagnesium reagents. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Ma Y, Lv L, Li Z. β-Perfluoroalkyl Peroxides as Fluorinated C3-Building Blocks for the Construction of Benzo[4,5]imidazo[1,2- a]pyridines. J Org Chem 2022; 87:1564-1573. [PMID: 34989560 DOI: 10.1021/acs.joc.1c02589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient and selective protocol for the synthesis of perfluoroalkyl-group-substituted benzo[4,5]imidazo[1,2-a]pyridines has been developed in which β-perfluoroalkyl peroxides act as novel fluorinated C3-building blocks to implement regioselective [3 + 3] annulation with 2-cyanomethyl benzimidazole under metal-free conditions. The application of the synthesized perfluoroalkylated BIPs as potent anticancer reagents versus the nonfluorinated ones demonstrated the biological utility of this method.
Collapse
Affiliation(s)
- Yangyang Ma
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
16
|
Ge D, Chu XQ. Multiple-fold C–F bond functionalization for the synthesis of (hetero)cyclic compounds: fluorine as a detachable chemical handle. Org Chem Front 2022. [DOI: 10.1039/d1qo01749g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlighted the recent advances in the field of multiple-fold C–F bond functionalization for the synthesis of (hetero)cyclic compounds.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Zhang S, Li X, Li W, Rao W, Ge D, Shen Z, Chu X. Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Sun LW, Yu ZL, Luo XL, Ma M, Shen ZL, Chu XQ. Transition-metal-free hydroamination/defluorination/cyclization of perfluoroalkyl alkynes with amidines. Org Chem Front 2022. [DOI: 10.1039/d1qo01439k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient defluorinative cyclization strategy for the construction of perfluoroalkyl-substituted pyrimidines by using perfluoroalkyl alkynes and amidines as substrates was developed.
Collapse
Affiliation(s)
- Li-Wen Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Lun Yu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin-Long Luo
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
19
|
Ma Y, Chen Y, Lv L, Li Z. Regioselective Synthesis of Emission Color‐Tunable Pyrazolo[1,5‐a]pyrimidines with β,β‐Difluoro Peroxides as 1,3‐Bis‐Electrophiles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yangyang Ma
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Yuanjin Chen
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
- College of Chemistry Peking University Beijing 100871 People's Republic of China
| | - Leiyang Lv
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Zhiping Li
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| |
Collapse
|
20
|
Wulkesch C, Czekelius C. Straightforward Synthesis of Fluorinated Enals via Photocatalytic α-Perfluoroalkenylation of Aldehydes. J Org Chem 2021; 86:7425-7438. [PMID: 34008975 DOI: 10.1021/acs.joc.1c00383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
(Per)fluorinated substances represent an important compound class with regard to drug design and material chemistry. We found a mild, operationally simple, and inexpensive photocatalytic perfluoroalkenylation reaction giving tetrasubstituted, highly electron-deficient enals straight from aldehydes. This one-step reaction tolerates various functional groups and can be applied to a wide range of substrates giving the products in yields of 52-84%.
Collapse
Affiliation(s)
- Christian Wulkesch
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Constantin Czekelius
- Department of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
21
|
Chu XQ, Zhi ML, Zhang SX, Wang YW, Rao W, Xu H, Shen ZL. Palladium-catalyzed defluorinative alkynylation of polyfluoroalkyl ketones with alkynes for the synthesis of fluorinated fused furans. Org Chem Front 2021. [DOI: 10.1039/d0qo01009j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A Pd-catalyzed C–F bond alkynylation of polyfluoroalkyl ketones with terminal alkynes for the synthesis of fluoroalkylated fused furans was developed.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Man-Ling Zhi
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Si-Xuan Zhang
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Ya-Wen Wang
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF)
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
22
|
Wang QD, Zhang C, Sun LW, Luo XL, Rao W, Shen ZL, Chu XQ. Defluorinative phosphorylation of perfluoroalkyl ketones: synthesis of fluoroalkylated and phosphorylated furan derivatives. Org Chem Front 2021. [DOI: 10.1039/d0qo01631d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient method for the synthesis of fluoroalkylated tri(hetero)arylphosphine oxides from polyfluoroalkyl ketones and phosphine oxides or phosphonates has been developed.
Collapse
Affiliation(s)
- Qing-Dong Wang
- School of Pharmacy
- Yancheng Teachers University
- Yancheng 224007
- China
| | - Chen Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Li-Wen Sun
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xin-Long Luo
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
23
|
Cheng B, Ge D, Wang X, Chu X. Perfluoroalkyl Halides as Fluorine-Containing Building Blocks for the Synthesis of Fluoroalkylated Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Xie T, Zhang C, Zhang S, Rao W, Xu H, Shen Z, Chu X. Synthesis of Polycyclic Furan and Chromene Derivatives
via
Cascade Reactions Enabled by Cleavage of Multiple C(
sp
3
)−F Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000660] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ting Xie
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Chen Zhang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Si‐Xuan Zhang
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang Jiangsu 212003 People's Republic of China
| | - Zhi‐Liang Shen
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Xue‐Qiang Chu
- Technical Institute of Fluorochemistry (TIF) Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
25
|
Gao Q, Wu M, Zhang K, Yang N, Liu M, Li J, Fang L, Bai S, Xu Y. I2-Catalyzed Aerobic α,β-Dehydrogenation and Deamination of Tertiary Alkylamines: Highly Selective Synthesis of Polysubstituted Pyrimidines via Hidden Acyclic Enamines. Org Lett 2020; 22:5645-5649. [DOI: 10.1021/acs.orglett.0c02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ke Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ning Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mengting Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Juan Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
26
|
Cheng BQ, Zhang SX, Cui YY, Chu XQ, Rao W, Xu H, Han GZ, Shen ZL. Copper(II)-Mediated Ring Opening/Alkynylation of Tertiary Cyclopropanols by Using Nonmodified Terminal Alkynes. Org Lett 2020; 22:5456-5461. [DOI: 10.1021/acs.orglett.0c01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bu-Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Si-Xuan Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
| | - Guo-Zhi Han
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
27
|
Zhao S, Cai S, Wang M, Rao W, Xu H, Zhang L, Chu X, Shen Z. Selective C(
sp
3
)−H Functionalization of Alkyl Esters with
N
‐/
S
‐/
O
‐Nucleophiles Using Perfluoroalkyl Iodide as Oxidant. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shi‐Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Song‐Zhou Cai
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Mao‐Lin Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical EngineeringNanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haiyan Xu
- School of Environmental and Chemical EngineeringJiangsu University of Science and Technology, Zhenjiang Jiangsu 212003 People's Republic of China
| | - Lei Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular EngineeringNanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
28
|
Min W, Guo G, Yang C, Huo C. Visible light promoted sulfonylation and sulfonylcarbonylation of alkenes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Israr M, Xiong H, Li Y, Bao H. Copper‐Catalyzed Enantioselective Cyano(Fluoro)Alkylation of Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Israr
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
30
|
Ma Y, Chen Y, Lou C, Li Z. DABCO‐Mediated [4+1] Cycloaddition of β,β‐Dihalo Peroxides with Sodium Azide toward Isoxazoles. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yangyang Ma
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Yuanjin Chen
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Chenhao Lou
- Department of ChemistryRenmin University of China Beijing 100872 China
| | - Zhiping Li
- Department of ChemistryRenmin University of China Beijing 100872 China
| |
Collapse
|
31
|
Ding Y, Ma R, Hider RC, Ma Y. Acid‐Catalyzed Pseudo Five‐Component Annulation for a General One‐Pot Synthesis of 2,4,6‐Triaryl Pyrimidines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuxin Ding
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
- School of Pharmaceutical ScienceZhejiang Chinese Medical University Hangzhou 310053 P R China
| | - Renchao Ma
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
| | - Robert C. Hider
- Institute of Pharmaceutical ScienceKing's College London Franklin-Wilkins Building Stamford Street London SE1 9NH UK
| | - Yongmin Ma
- School of Pharmaceutical and Chemical EngineeringTaizhou University Taizhou 318000 P. R. China
- School of Pharmaceutical ScienceZhejiang Chinese Medical University Hangzhou 310053 P R China
| |
Collapse
|
32
|
Herrera F, Luna A, Fernández I, Almendros P. Transition metal-free cyclobutene rearrangement in fused naphthalen-1-ones: controlled access to functionalized quinones. Chem Commun (Camb) 2020; 56:1290-1293. [DOI: 10.1039/c9cc08628e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The divergent preparation of 1,4-naphthoquinones and tetraphene-7,12-diones, which bear the ABCD-ring of landomycins, has been accomplished directly through oxidative reorganization of previously non-isolable cyclobuta[a]naphthalen-4(2H)-ones.
Collapse
Affiliation(s)
- Fernando Herrera
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Amparo Luna
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Israel Fernández
- Departamento de Química Orgánica I and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Facultad de CC. Químicas
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | - Pedro Almendros
- Instituto de Química Orgánica General
- IQOG-CSIC
- Juan de la Cierva 3
- 28006-Madrid
- Spain
| |
Collapse
|
33
|
Chu XQ, Xie T, Wang YW, Li XR, Rao W, Xu H, Shen ZL. Synthesis of di(hetero)aryl sulfides by defluorinative sulfenylation of polyfluoroalkyl ketones with sodium sulfinates or arylsulfonyl chlorides. Chem Commun (Camb) 2020; 56:8699-8702. [DOI: 10.1039/d0cc03303k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cascade reactions of α-perfluoroalkyl ketones with sodium sulfinates or arylsulfonyl chlorides that allowed the efficient synthesis of fluoroalkylated di(hetero)aryl sulfide derivatives under transition metal-free conditions were developed.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ting Xie
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ya-Wen Wang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xiang-Rui Li
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Haiyan Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|
34
|
Ye F, Zhang S, Wei Z, Weniger F, Spannenberg A, Taeschler C, Ellinger S, Jiao H, Neumann H, Beller M. Versatile Fluorinated Building Blocks by Stereoselective (Per)fluoroalkenylation of Ketones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fei Ye
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education; Hangzhou Normal University; 311121 Hangzhou China
| | - Shaoke Zhang
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Zhihong Wei
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Florian Weniger
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | | | | | - Haijun Jiao
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
35
|
Copper(II)-catalyzed preparation of alkylindium compounds and applications in cross-coupling reactions both in aqueous media. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Chen Y, Li L, He X, Li Z. Four-Component Reactions for the Synthesis of Perfluoroalkyl Isoxazoles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liangkui Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiao He
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
37
|
Chu X, Ge D, Wang M, Rao W, Loh T, Shen Z. Chemo‐ and Regioselective Ring Construction Driven by Visible‐Light Photoredox Catalysis: an Access to Fluoroalkylated Oxazolidines Featuring an All‐Substituted Carbon Stereocenter. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900585] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xue‐Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Mao‐Lin Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Teck‐Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Zhi‐Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing 211816 People's Republic of China
| |
Collapse
|
38
|
Liu XY, Li XR, Zhang C, Chu XQ, Rao W, Loh TP, Shen ZL. Iron(0)-Mediated Reformatsky Reaction for the Synthesis of β-Hydroxyl Carbonyl Compounds. Org Lett 2019; 21:5873-5878. [PMID: 31318222 DOI: 10.1021/acs.orglett.9b01999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An efficient, economical, and practical Reformatsky reaction of α-halo carbonyl compounds with aldehydes/ketones by using cheap and commercial iron(0) powder as reaction mediator is developed. The reactions proceeded effectively in the presence of a catalytic amount of iodine (20 mol %) to afford the synthetically useful β-hydroxyl carbonyl compounds in moderate to good yields.
Collapse
Affiliation(s)
- Xuan-Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xiang-Rui Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Chen Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
39
|
Cheng BQ, Zhao SW, Song XD, Chu XQ, Rao W, Loh TP, Shen ZL. Lead-Mediated Highly Diastereoselective Allylation of Aldehydes with Cyclic Allylic Halides. J Org Chem 2019; 84:5348-5356. [DOI: 10.1021/acs.joc.9b00370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bu-Qing Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Wen Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xuan-Di Song
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Weidong Rao
- Jiangsu Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
40
|
Chen Y, Li L, Ma Y, Li Z. Cobalt-Catalyzed Three-Component Difluoroalkylation–Peroxidation of Alkenes. J Org Chem 2019; 84:5328-5338. [DOI: 10.1021/acs.joc.9b00339] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liangkui Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
41
|
Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo00283a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the synthesis of N-heterocycles using amidines as starting materials, with an emphasis on the mechanisms of these reactions via C–N/C–C bond formation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
42
|
Chu XQ, Ge D, Loh TP, Shen ZL. Oxidant-directed chemoselective sulfonylation and sulfonyloximation of alkenes via cleaving the C–S bond in TosMIC. Org Chem Front 2019. [DOI: 10.1039/c8qo01346b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidant-directed chemoselective sulfonylation and sulfonyloximation reactions for the divergent synthesis of valuable vinyl sulfones and α-sulfonylethanone oximes are developed.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Danhua Ge
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
43
|
Su L, Sun K, Pan N, Liu L, Sun M, Dong J, Zhou Y, Yin SF. Cyclization of Ketones with Nitriles under Base: A General and Economical Synthesis of Pyrimidines. Org Lett 2018; 20:3399-3402. [DOI: 10.1021/acs.orglett.8b01324] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kang Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Mengli Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
44
|
Chu XQ, Xie T, Li L, Ge D, Shen ZL, Loh TP. Combining Fluoroalkylation and Defluorination to Enable Formal [3 + 2 + 1] Heteroannulation by Using Visible-Light Photoredox Organocatalysis. Org Lett 2018; 20:2749-2752. [DOI: 10.1021/acs.orglett.8b00963] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ting Xie
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lin Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
45
|
Xie T, Zhang YW, Liu LL, Shen ZL, Loh TP, Chu XQ. Polycyclic heteroaromatic ring construction driven by silver/cobalt co-catalyzed desulfonylative and defluorinative fragment-recombination of enol nonaflates with amidines. Chem Commun (Camb) 2018; 54:12722-12725. [DOI: 10.1039/c8cc07409g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel Ag(i)/Co(ii) co-catalyzed tandem fragmentation and recombination reaction commencing from detachable nonaflates and amidines has been developed.
Collapse
Affiliation(s)
- Ting Xie
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yao-Wei Zhang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Li-Li Liu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Teck-Peng Loh
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
46
|
Almendros P, Yanai H, Hoshikawa S, Aragoncillo C, Lázaro-Milla C, Toledano-Pinedo M, Matsumoto T, Alcaide B. Transition metal-free controlled synthesis of bis[(trifluoromethyl)sulfonyl]ethyl-decorated heterocycles. Org Chem Front 2018. [DOI: 10.1039/c8qo00955d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The metal- and irradiation-free C–H bis(triflyl)ethylation reactions of a variety of heterocycles including marketed drugs have been accomplished.
Collapse
Affiliation(s)
- Pedro Almendros
- Instituto de Química Orgánica General
- Consejo Superior de Investigaciones Científicas
- IQOG-CSIC
- 28006 Madrid
- Spain
| | - Hikaru Yanai
- School of Pharmacy
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Shoki Hoshikawa
- School of Pharmacy
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Cristina Aragoncillo
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Carlos Lázaro-Milla
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Mireia Toledano-Pinedo
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| | - Takashi Matsumoto
- School of Pharmacy
- Tokyo University of Pharmacy and Life Sciences
- Tokyo 192-0392
- Japan
| | - Benito Alcaide
- Grupo de Lactamas y Heterociclos Bioactivos
- Departamento de Química Orgánica I
- Unidad Asociada al CSIC
- Facultad de Química
- Universidad Complutense de Madrid
| |
Collapse
|