1
|
Fischer N, Tóth A, Jancsó A, Thulstrup P, Diness F. Inducing α-Helicity in Peptides by Silver Coordination to Cysteine. Chemistry 2024; 30:e202304064. [PMID: 38456607 DOI: 10.1002/chem.202304064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Short peptide sequences consisting of two cysteine residues separated by three other amino acids display complete change from random coil to α-helical secondary structure in response to addition of Ag+ ions. The folded CXXXC/Ag+ complex involves formation of multinuclear Ag+ species and is stable in a wide pH range from below 3 to above 8. The complex is stable through reversed-phase HPLC separation as well as towards a physiological level of chloride ions, based on far-UV circular dichroism spectroscopy. In electrospray MS under acidic conditions a peptide dimer with four Ag+ ions bound was observed, and modelling based on potentiometric experiments supported this to be the dominating complex at neutral pH together with a peptide dimer with 3 Ag+ and one proton at lower pH. The complex was demonstrated to work as a N-terminal nucleation site for inducing α-helicity into longer peptides. This type of silver-mediated peptide assembly and folding may be of more general use for stabilizing not only peptide folding but also for controlling oligomerization even under acidic conditions.
Collapse
Affiliation(s)
- Niklas Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Annamária Tóth
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Attila Jancsó
- Department of Molecular and Analytical Chemistry, University of Szeged, Dómtér 7-8, H-6720, Szeged, Hungary
| | - Peter Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, København Ø, Denmark
| |
Collapse
|
2
|
Horsfall AJ, Dunning KR, Keeling KL, Scanlon DB, Wegener KL, Abell AD. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. Chembiochem 2020; 21:3423-3432. [DOI: 10.1002/cbic.202000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kylie R. Dunning
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Robinson Research Institute, Adelaide Medical School The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kelly L. Keeling
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Denis B. Scanlon
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kate L. Wegener
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- School of Biological Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
3
|
Baggio C, Udompholkul P, Gambini L, Jossart J, Salem AF, Håkansson M, Perry JJP, Pellecchia M. N-locking stabilization of covalent helical peptides: Application to Bfl-1 antagonists. Chem Biol Drug Des 2020; 95:412-426. [PMID: 31898401 DOI: 10.1111/cbdd.13661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
Recently, it was reported that tetrapeptides cyclized via lactam bond between the amino terminus and a glutamic residue in position 4 (termed here N-lock) can nucleate helix formation in longer peptides. We applied such strategy to derive N-locked covalent BH3 peptides that were designed to selectively target the anti-apoptotic protein Bfl-1. The resulting agents were soluble in aqueous buffer and displayed a remarkable (low nanomolar) affinity for Bfl-1 and cellular activity. The crystal structure of the complex between such N-locked covalent peptide and Bfl-1 provided insights on the geometry of the N-locking strategy and of the covalent bond between the agent and Bfl-1.
Collapse
Affiliation(s)
- Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Jennifer Jossart
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Ahmed F Salem
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | | | - J Jefferson P Perry
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
4
|
Hoang HN, Wu C, Hill TA, Dantas de Araujo A, Bernhardt PV, Liu L, Fairlie DP. A Novel Long‐Range n to π* Interaction Secures the Smallest known α‐Helix in Water. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Chongyang Wu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
5
|
Hoang HN, Wu C, Hill TA, Dantas de Araujo A, Bernhardt PV, Liu L, Fairlie DP. A Novel Long-Range n to π* Interaction Secures the Smallest known α-Helix in Water. Angew Chem Int Ed Engl 2019; 58:18873-18877. [PMID: 31625253 DOI: 10.1002/anie.201911277] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Indexed: 12/17/2022]
Abstract
The introduction of an amide bond linking side chains of the first and fifth amino acids forms a cyclic pentapeptide that optimally stabilizes the smallest known α-helix in water. The origin of the stabilization is unclear. The observed dependence of α-helicity on the solvent and cyclization linker led us to discover a novel long-range n to π* interaction between a main-chain amide oxygen and a uniquely positioned carbonyl group in the linker of cyclic pentapeptides. CD and NMR spectra, NMR and X-ray structures, modelling, and MD simulations reveal that this first example of a synthetically incorporated long-range n to π* CO⋅⋅⋅Cγ =Ο interaction uniquely enforces an almost perfect and remarkably stable peptide α-helix in water but not in DMSO. This unusual interaction with a covalent amide bond outside the helical backbone suggests new approaches to synthetically stabilize peptide structures in water.
Collapse
Affiliation(s)
- Huy N Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chongyang Wu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy A Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
6
|
Lin C, Maisonneuve S, Theulier C, Xie J. Synthesis and Photochromic Properties of Azobenzene-Derived Glycomacrolactones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chaoqi Lin
- PPSM, ENS Paris-Saclay, CNRS; Université Paris-Saclay; 94235 Cachan France
| | | | - Cyril Theulier
- PPSM, ENS Paris-Saclay, CNRS; Université Paris-Saclay; 94235 Cachan France
| | - Juan Xie
- PPSM, ENS Paris-Saclay, CNRS; Université Paris-Saclay; 94235 Cachan France
| |
Collapse
|
7
|
Skowron KJ, Speltz TE, Moore TW. Recent structural advances in constrained helical peptides. Med Res Rev 2018; 39:749-770. [PMID: 30307621 DOI: 10.1002/med.21540] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Given the ubiquity of the ⍺-helix in the proteome, there has been much research in developing mimics of ⍺-helices, and most of this study has been toward developing protein-protein interaction inhibitors. A common strategy for mimicking ⍺-helices has been through the use of constrained, helical peptides. The addition of a constraint typically provides for conformational and proteolytic stability and, in some cases, cell permeability. Some of the most well-known strategies included are lactam formation and hydrocarbon "stapling." Beyond those strategies, there have been many recent advances in developing constrained peptides. The purpose of this review is to highlight recent advances in the development of new helix-stabilizing technologies, constraint diversification strategies, tether diversification strategies, and combination strategies that create new bicyclic helical peptides.
Collapse
Affiliation(s)
- Kornelia J Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Thomas E Speltz
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.,Translational Oncology Program, University of Illinois Cancer Center, Chicago, Illinois
| |
Collapse
|
8
|
Structural Characterisation of Predicted Helical Regions in the Chironex fleckeri CfTX-1 Toxin. Mar Drugs 2018; 16:md16060201. [PMID: 29880743 PMCID: PMC6024933 DOI: 10.3390/md16060201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
The Australian jellyfish Chironex fleckeri, belongs to a family of cubozoan jellyfish known for their potent venoms. CfTX-1 and -2 are two highly abundant toxins in the venom, but there is no structural data available for these proteins. Structural information on toxins is integral to the understanding of the mechanism of these toxins and the development of an effective treatment. Two regions of CfTX-1 have been predicted to have helical structures that are involved with the mechanism of action. Here we have synthesized peptides corresponding to these regions and analyzed their structures using NMR spectroscopy. The peptide corresponding to the predicted N-terminal amphiphilic helix appears unstructured in aqueous solution. This lack of structure concurs with structural disorder predicted for this region of the protein using the Protein DisOrder prediction System PrDOS. Conversely, a peptide corresponding to a predicted transmembrane region is very hydrophobic, insoluble in aqueous solution and predicted to be structured by PrDOS. In the presence of SDS-micelles both peptides have well-defined helical structures showing that a membrane mimicking environment stabilizes the structures of both peptides and supports the prediction of the transmembrane region in CfTX-1. This is the first study to experimentally analyze the structure of regions of a C. fleckeri protein.
Collapse
|