1
|
Zhao Y, Li P, Wang X, Wu Y, Liu L, Zhao R. A novel pectin polysaccharide from vinegar-baked Radix Bupleuri absorbed by microfold cells in the form of nanoparticles. Int J Biol Macromol 2024; 266:131096. [PMID: 38522695 DOI: 10.1016/j.ijbiomac.2024.131096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/08/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Polysaccharides of vinegar-baked Radix Bupleuri (VBCP) have been reported to exhibit liver-targeting and immunomodulatory activities through oral administration, but the absorption behavior and mechanism of VBCPs have not been extensively studied. In this study, a novel HG type pectin polysaccharide, VBCP1-4, with a high molecular weight of 2.94 × 106 Da, was separated from VBCP. VBCP1-4 backbone was contained 1,4-α-D-GalpA, 1,4-α-D-GalpA6OMe, 1,3,4-α-D-GalpA and 1,2,4-α-D-Rhap. The branches were mainly contained 1,5-α-L-Araf, 1,3,5-α-L-Araf, t-α-L-Araf and t-α-D-Galp, which linked to the 3 position of 1,3,4-α-D-GalpA and the 4 position of 1,2,4-α-D-Rhap. VBCP1-4 could self-assemble to nanoparticles in water, with CMC values of 106.41 μg/mL, particle sizes of 178.20 ± 2.82 nm and zeta potentials of -23.19 ± 1.44 mV. The pharmacokinetic study of VBCP1-4, which detected by marking with FITC, revealed that it could be partially absorbed into the body through Peyer's patches of the ileum. In vitro absorption study demonstrated that VBCP1-4 was difficult to be absorbed by Caco-2 cell monolayer, but could be absorbed by M cells in a time and concentration dependent manner. The absorption mechanism was elucidated that VBCP1-4 entered M cells through clathrin-mediated endocytosis in the form of nanoparticles. These findings provide valuable insights into the absorption behavior of VBCP and contribute to its further development.
Collapse
Affiliation(s)
- Ya Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ping Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoshuang Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yayun Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lijuan Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampaness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Neihuan Xilu, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
2
|
Taiwaikuli M, Wang T, Chen K, Feng Y, Xing J, Huang X, Wang N, Zhou L, Hao H. Mechanistic study of the formation of arbutin polymorphs and solvates. CrystEngComm 2023. [DOI: 10.1039/d2ce01670b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Six solid forms of arbutin are successfully obtained and four single crystal structures are reported for the first time. Further, the formation mechanism of arbutin solvates is proposed and rationalized.
Collapse
Affiliation(s)
- Mukaidaisi Taiwaikuli
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Kui Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jiangna Xing
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
3
|
Abstract
We present a holistic crystallographic study of the antiviral ganciclovir, including insights into its solid-state behavior, which could prove useful during drug development, making the process more sustainable. A newly developed methodology was used incorporating a combination of statistical and thermodynamic approaches, which can be applied to various crystalline materials. We demonstrate how the chemical environment and orientation of a functional group can affect its accessibility for participation in hydrogen bonding. The difference in the nature and strength of intermolecular contacts between the two anhydrous forms, exposed through full interaction maps and Hirshfeld surfaces, leads to the manifestation of conformational polymorphism. Variations in the intramolecular geometry and intermolecular interactions of both forms of ganciclovir were identified as possible predictors for their relative thermodynamic stability. It was shown through energy frameworks how the extensive supramolecular network of contacts in form I causes a higher level of compactness and lower enthalpy relative to form II. The likelihood of the material to exhibit polymorphism was assessed through a hydrogen bond propensity model, which predicted a high probability associated with the formation of other relatively stable forms. However, this model failed to classify the stability of form I appropriately, suggesting that it might not have fully captured the collective impacts which govern polymorphic stability.
Collapse
|
4
|
Abstract
Data informatics methods applied to the Cambridge Structural Database reveal shifting trends in solvate formation and inherent biases in the symmetry and packing fraction of solvates and their solvent-free analogues.
Collapse
Affiliation(s)
- Jen E. Werner
- Georgetown University
- Department of Chemistry
- Washington
- USA
| | | |
Collapse
|
5
|
Zhao Y, Wan P, Wang J, Li P, Hu Q, Zhao R. Polysaccharide from vinegar baked radix bupleuri as efficient solubilizer for water-insoluble drugs of Chinese medicine. Carbohydr Polym 2020; 229:115473. [DOI: 10.1016/j.carbpol.2019.115473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 10/13/2019] [Indexed: 01/09/2023]
|
6
|
Intermolecular Interactions in Functional Crystalline Materials: From Data to Knowledge. CRYSTALS 2019. [DOI: 10.3390/cryst9090478] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intermolecular interactions of organic, inorganic, and organometallic compounds are the key to many composition–structure and structure–property networks. In this review, some of these relations and the tools developed by the Cambridge Crystallographic Data Center (CCDC) to analyze them and design solid forms with desired properties are described. The potential of studies supported by the Cambridge Structural Database (CSD)-Materials tools for investigation of dynamic processes in crystals, for analysis of biologically active, high energy, optical, (electro)conductive, and other functional crystalline materials, and for the prediction of novel solid forms (polymorphs, co-crystals, solvates) are discussed. Besides, some unusual applications, the potential for further development and limitations of the CCDC software are reported.
Collapse
|
7
|
Taylor R, Wood PA. A Million Crystal Structures: The Whole Is Greater than the Sum of Its Parts. Chem Rev 2019; 119:9427-9477. [PMID: 31244003 DOI: 10.1021/acs.chemrev.9b00155] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The founding in 1965 of what is now called the Cambridge Structural Database (CSD) has reaped dividends in numerous and diverse areas of chemical research. Each of the million or so crystal structures in the database was solved for its own particular reason, but collected together, the structures can be reused to address a multitude of new problems. In this Review, which is focused mainly on the last 10 years, we chronicle the contribution of the CSD to research into molecular geometries, molecular interactions, and molecular assemblies and demonstrate its value in the design of biologically active molecules and the solid forms in which they are delivered. Its potential in other commercially relevant areas is described, including gas storage and delivery, thin films, and (opto)electronics. The CSD also aids the solution of new crystal structures. Because no scientific instrument is without shortcomings, the limitations of CSD research are assessed. We emphasize the importance of maintaining database quality: notwithstanding the arrival of big data and machine learning, it remains perilous to ignore the principle of garbage in, garbage out. Finally, we explain why the CSD must evolve with the world around it to ensure it remains fit for purpose in the years ahead.
Collapse
Affiliation(s)
- Robin Taylor
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| | - Peter A Wood
- Cambridge Crystallographic Data Centre , 12 Union Road , Cambridge CB2 1EZ , United Kingdom
| |
Collapse
|
8
|
Tan D, Ng ZX, Sim Y, Ganguly R, García F. cis-Cyclodiphosph(v/v)azanes as highly stable and robust main group supramolecular building blocks. CrystEngComm 2018. [DOI: 10.1039/c8ce00395e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bench-top stable cis-cyclodiphosph(v/v)azanes are demonstrated to form robust R21(8) bifurcated hydrogen-bonds and PSe⋯Br halogen bonds. This work highlights the potential of cyclodiphosph(v/v)azane building blocks in creating new supramolecular assemblies.
Collapse
Affiliation(s)
- Davin Tan
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
- Singapore
| | - Zi Xuan Ng
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
- Singapore
| | - Ying Sim
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
- Singapore
| | - Rakesh Ganguly
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
- Singapore
| | - Felipe García
- School of Physical and Mathematical Sciences
- Division of Chemistry and Biological Chemistry
- Nanyang Technological University
- Singapore
- Singapore
| |
Collapse
|