1
|
Plamper D, Fujioka K, Schmidt S, Sun R, Weitzel KM. Ion-molecule reactions in the HBr + + HCl (DCl) system: a combined experimental and theoretical study. Phys Chem Chem Phys 2023; 25:2629-2640. [PMID: 36602406 DOI: 10.1039/d2cp03654a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions in the system HBr+ + HCl (DCl) were investigated inside a guided ion-beam apparatus under single-collision conditions. In the HBr+ + HCl system, the proton transfer (PTHCl) and charge transfer (CT) are observable. In the HBr+ + DCl system, proton transfer (PTDCl) and deuterium abstraction (DA) are accessible. The cross sections for all reaction channels were measured as a function of the collision energy Ecm and of the rotational energy Erot of the ion. The rotationally state-selective formation of the ionic species was realized by resonance-enhanced multiphoton ionization (REMPI). As expected, the PT-channels are exothermic, and the cross section decreases with increasing collision energy for both PTHCl and PTDCl. The cross section for DA also decreases with an increasing Ec.m.. In the case of a considerably endothermic CT-channel, the reaction efficiency increases with increasing collision energy but has an overall much smaller cross sections compared to PT and DA reactions. Both PT-reactions are hindered by ion rotation, whereas DA is independent of Erot. The CT-channel shows a rotational enhancement near the thermochemical threshold. The experiment is complemented by theory, using ab initio molecular dynamics (AIMD, also known as direct dynamics) simulations and taking the rotational enhancement of HBr+ into account. The simulations show good agreement with the experimental results. The cross section of PTHCl decreases with an increase of the rotational energy. Furthermore, the absolute cross sections are in the same order of magnitude. The CT channel shows no reactions in the simulation.
Collapse
Affiliation(s)
- Dominik Plamper
- Philipps-Universität Marburg, Fachbereich Chemie, 35032 Marburg, Germany.
| | - Kazuumi Fujioka
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | - Sebastian Schmidt
- Philipps-Universität Marburg, Fachbereich Chemie, 35032 Marburg, Germany.
| | - Rui Sun
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, USA.
| | | |
Collapse
|
2
|
Liu R, Song H, Qi J, Yang M. A ten-dimensional quantum dynamics model for the X + YCAB 2 reaction: Application to H + CH 4 reaction. J Chem Phys 2020; 153:224119. [DOI: 10.1063/5.0033851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rui Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- China Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ji Qi
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
3
|
Hillenbrand PM, Bowen KP, Dayou F, Miller KA, de Ruette N, Urbain X, Savin DW. Experimental study of the proton-transfer reaction C + H 2+ → CH + + H and its isotopic variant (D 2+). Phys Chem Chem Phys 2020; 22:27364-27384. [PMID: 33231243 DOI: 10.1039/d0cp04810k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report absolute integral cross section (ICS) measurements using a dual-source merged-fast-beams apparatus to study the titular reactions over the relative translational energy range of Er ∼ 0.01-10 eV. We used photodetachment of C- to produce a pure beam of atomic C in the ground electronic 3P term, with statistically populated fine-structure levels. The H2+ and D2+ were formed in an electron impact ionization source, with well known vibrational and rotational distributions. The experimental work is complemented by a theoretical study of the CH2+ electronic system in the reactant and product channels, which helps to clarify the possible reaction mechanisms underlying the ICS measurements. Our measurements provide evidence that the reactions are barrierless and exoergic. They also indicate the apparent absence of an intermolecular isotope effect, to within the total experimental uncertainties. Capture models, taking into account either the charge-induced dipole interaction potential or the combined charge-quadrupole and charge-induced dipole interaction potentials, produce reaction cross sections that lie a factor of ∼4 above the experimental results. Based on our theoretical study, we hypothesize that the reaction is most likely to proceed adiabatically through the 14A' and 14A'' states of CH2+via the reaction C(3P) + H2+(2Σ+g) → CH+(3Π) + H(2S). We also hypothesize that at low collision energies only H2+(v ≤ 2) and D2+(v ≤ 3) contribute to the titular reactions, due to the onset of dissociative charge transfer for higher vibrational v levels. Incorporating these assumptions into the capture models brings them into better agreement with the experimental results. Still, for energies ⪅0.1 eV where capture models are most relevant, the modified charge-induced dipole model yields reaction cross sections with an incorrect energy dependence and lying ∼10% below the experimental results. The capture cross section obtained from the combined charge-quadrupole and charge-induced dipole model better matches the measured energy dependence but lies ∼30-50% above the experimental results. These findings provide important guidance for future quasiclassical trajectory and quantum mechanical treatments of this reaction.
Collapse
|
4
|
Schmidt S, Plamper D, Jekkel J, Weitzel KM. Self-Reactions in the HBr + (DBr +) + HBr System: A State-Selective Investigation of the Role of Rotation. J Phys Chem A 2020; 124:8461-8468. [PMID: 32960596 DOI: 10.1021/acs.jpca.0c07361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-reactions observed in the HBr+ (DBr+) + HBr system have been investigated using a guided ion-beam experiment under single-collision conditions. The reaction channels observed are proton transfer/hydrogen abstraction (PT/HA) in the case of HBr+ and deuteron transfer/hydrogen abstraction (DT/HA) and charge transfer (CT) in the case of DBr+. HBr+/DBr+ ions have been formed with rotational energies selected using the resonance-enhanced multiphoton ionization (REMPI) formation process. Cross sections have been measured as a function of the rotational energy of the ion, Erot, and of the center-of-mass collision energy, Ecm. In the region of low rotational energies, the cross section for both PT/HA and DT/HA decreases with increasing ion rotation. In this region, the cross section for CT increases with increasing ion rotation. For higher rotational energies, the cross section increases with increasing ion rotation for PT/HA and less pronounced for DT/HA. The cross section for CT becomes independent of ion rotation for high rotational energies. Since all reaction channels are exothermic, all cross sections decrease with increasing Ecm.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | - Dominik Plamper
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | - Jasmin Jekkel
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | | |
Collapse
|
5
|
Xu Y, Xiong B, Chang YC, Ng CY. Quantum-State-Selected Integral Cross Sections and Branching Ratios for the Ion–Molecule Reaction of N2+(X2Σg+: ν+ = 0–2) + C2H4 in the Collision Energy Range of 0.05–10.00 eV. J Phys Chem A 2018; 122:6491-6499. [DOI: 10.1021/acs.jpca.8b04587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuntao Xu
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Bo Xiong
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Yih Chung Chang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Cheuk-Yiu Ng
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
Cernuto A, Pirani F, Martini LM, Tosi P, Ascenzi D. The Selective Role of Long-Range Forces in the Stereodynamics of Ion-Molecule Reactions: The He + +Methyl Formate Case From Guided-Ion-Beam Experiments. Chemphyschem 2018; 19:51-59. [PMID: 29045020 DOI: 10.1002/cphc.201701096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/20/2022]
Abstract
Long-range intermolecular forces play a crucial role in controlling the outcome of ion-molecule chemical reactions, such as those determining the disappearance of organic or inorganic "complex" molecules recently detected in various regions of the interstellar medium due to collisions with abundant interstellar atomic ions (e.g. H+ and He+ ). Theoretical treatments, for example, based on simple capture models, are nowadays often adopted to evaluate the collision-energy dependence of reactive cross sections and the temperature dependent rate coefficients of many ion-molecule reactions. The obtained results are widely used for the modelling of phenomena occurring in different natural environments or technological applications such as astrophysical and laboratory plasmas. Herein it is demonstrated, through a combined experimental and theoretical investigation on a prototype ion-molecule reaction (He+ +methyl formate), that the dynamics, investigated in detail, shows some intriguing features that can lead to rate coefficients at odds with the expectations (e.g. Arrhenius versus anti-Arrhenius behaviour). Therefore, this study casts light on some new and general guidelines to be properly taken into account for a suitable evaluation of rate coefficients of ion-molecule reactions.
Collapse
Affiliation(s)
- Andrea Cernuto
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Universitá di Perugia, Via Elce di Sotto 8, Perugia, Italy.,Istituto di Nanotecnologia (CNR NANOTEC), 70126, Bari, Italy
| | - Luca Matteo Martini
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Paolo Tosi
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| | - Daniela Ascenzi
- Dipartimento di Fisica, Universitá di Trento, Via Sommarive 14, 38123, Trento, Italy
| |
Collapse
|
7
|
Xiong B, Chang YC, Ng CY. A quantum-rovibrational-state-selected study of the proton-transfer reaction H 2+(X 2Σ: v + = 1-3; N + = 0-3) + Ne → NeH + + H using the pulsed field ionization-photoion method: observation of the rotational effect near the reaction threshold. Phys Chem Chem Phys 2017; 19:18619-18627. [PMID: 28692096 DOI: 10.1039/c7cp03963h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using the sequential electric field pulsing scheme for vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) detection, we have successfully prepared H2+(X2Σ: v+ = 1-3; N+ = 0-5) ions in the form of an ion beam in single quantum-rovibrational-states with high purity, high intensity, and narrow laboratory kinetic energy spread (ΔElab ≈ 0.05 eV). This VUV-PFI-PI ion source, when coupled with the double-quadrupole double-octupole ion-molecule reaction apparatus, has made possible a systematic examination of the vibrational- as well as rotational-state effects on the proton transfer reaction of H2+(X2Σ: v+; N+) + Ne. Here, we present the integral cross sections [σ(v+; N+)'s] for the H2+(v+ = 1-3; N+ = 0-3) + Ne → NeH+ + H reaction observed in the center-of-mass kinetic energy (Ecm) range of 0.05-2.00 eV. The σ(v+ = 1, N+ = 1) exhibits a distinct Ecm onset, which is found to agree with the endothermicity of 0.27 eV for the proton transfer process after taking into account of experimental uncertainties. Strong v+-vibrational enhancements are observed for σ(v+ = 1-3, N+) in the Ecm range of 0.05-2.00 eV. While rotational excitations appear to have little effect on σ(v+ = 3, N+), a careful search leads to the observation of moderate N+-rotational enhancements at v+ = 2: σ(v+ = 2; N+ = 0) < σ(v+ = 2; N+ = 1) < σ(v+ = 2; N+ = 2) < σ(v+ = 2; N+ = 3), where the formation of NeH+ is near thermal-neutral. The σ(v+ = 1-3, N+ = 0-3) values obtained here are compared with previous experimental results and the most recent state-of-the-art quantum dynamics predictions. We hope that these new experimental results would further motivate more rigorous theoretical calculations on the dynamics of this prototypical ion-molecule reaction.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
8
|
Song H, Li A, Yang M, Guo H. Competition between the H- and D-atom transfer channels in the H 2O + + HD reaction: reduced-dimensional quantum and quasi-classical studies. Phys Chem Chem Phys 2017. [PMID: 28650041 DOI: 10.1039/c7cp02889j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ion-molecule reaction between a water cation and a hydrogen molecule has recently attracted considerable interest due to its importance in astrochemistry. In this work, the intramolecular isotope effect of the H2O+ + HD reaction is investigated using a seven-dimensional initial state-selected time-dependent wave packet approach as well as a full-dimensional quasi-classical trajectory method on a full-dimensional ab initio global potential energy surface. The calculated branching ratios for the formation of H3O+ and H2DO+via H- and D-transfer agree reasonably well with the experimental values. The preference to the formation of the H3O+ product observed using the experiment at low collision energies is reproduced by theoretical calculations and explained by a one-dimensional effective potential model.
Collapse
Affiliation(s)
- Hongwei Song
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | | | | | | |
Collapse
|
9
|
Xu Y, Xiong B, Chang YC, Pan Y, Lo PK, Lau KC, Ng CY. A quantum-rovibrational-state-selected study of the reaction in the collision energy range of 0.05-10.00 eV: translational, rotational, and vibrational energy effects. Phys Chem Chem Phys 2017; 19:9778-9789. [PMID: 28352920 DOI: 10.1039/c7cp00937b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report detailed absolute integral cross sections (σ's) for the quantum-rovibrational-state-selected ion-molecule reaction in the center-of-mass collision energy (Ecm) range of 0.05-10.00 eV, where (vvv) = (000), (100), and (020), and . Three product channels, HCO+ + OH, HOCO+ + H, and CO+ + H2O, are identified. The measured σ(HCO+) curve [σ(HCO+) versus Ecm plot] supports the hypothesis that the formation of the HCO+ + OH channel follows an exothermic pathway with no potential energy barriers. Although the HOCO+ + H channel is the most exothermic, the σ(HOCO+) is found to be significantly lower than the σ(HCO+). The σ(HOCO+) curve is bimodal, indicating two distinct mechanisms for the formation of HOCO+. The σ(HOCO+) is strongly inhibited at Ecm < 0.4 eV, but is enhanced at Ecm > 0.4 eV by (100) vibrational excitation. The Ecm onsets of σ(CO+) determined for the (000) and (100) vibrational states are in excellent agreement with the known thermochemical thresholds. This observation, along with the comparison of the σ(CO+) curves for the (100) and (000) states, shows that kinetic and vibrational energies are equally effective in promoting the CO+ channel. We have also performed high-level ab initio quantum calculations on the potential energy surface, intermediates, and transition state structures for the titled reaction. The calculations reveal potential barriers of ≈0.5-0.6 eV for the formation of HOCO+, and thus account for the low σ(HOCO+) and its bimodal profile observed. The Ecm enhancement for σ(HOCO+) at Ecm ≈ 0.5-5.0 eV can be attributed to the direct collision mechanism, whereas the formation of HOCO+ at low Ecm < 0.4 eV may involve a complex mechanism, which is mediated by the formation of a loosely sticking complex between HCO+ and OH. The direct collision and complex mechanisms proposed also allow the rationalization of the vibrational inhibition at low Ecm and the vibrational enhancement at high Ecm observed for the σ(HOCO+).
Collapse
Affiliation(s)
- Yuntao Xu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Xiong B, Chang YC, Ng CY. Quantum-state-selected integral cross sections for the charge transfer collision of O2+(a4Πu5/2,3/2,1/2,−1/2: v+= 1–2; J+) [O2+(X2Πg3/2,1/2: v+= 22–23; J+)] + Ar at center-of-mass collision energies of 0.05–10.00 eV. Phys Chem Chem Phys 2017; 19:29057-29067. [DOI: 10.1039/c7cp04886f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Study of spin–orbit and rovibronically selected ion-molecule reactions between O2+(a4Πu,ν+= 1–2; X2Πg,ν+= 22–23) and Ar.
Collapse
Affiliation(s)
- Bo Xiong
- Department of Chemistry
- University of California
- Davis
- USA
| | | | - Cheuk-Yiu Ng
- Department of Chemistry
- University of California
- Davis
- USA
| |
Collapse
|