1
|
Liu X, Qin G, Cui Y, Yang H, Liang Y, Jiang Y, Zhang Z, Liu X, Yuan J, Fang X. Dual-Label Single-Molecule Imaging Method for Quantifying Apparent Fluorescence Efficiency of Fluorescent Proteins. Anal Chem 2025; 97:10655-10660. [PMID: 40372803 DOI: 10.1021/acs.analchem.5c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Fluorescent proteins (FPs) are indispensable tools for life science research, crucial for quantitative analyses, such as protein stoichiometry determination, signal transduction, and protein-protein interactions. In this work, we introduce a new method of dual-color single-molecule imaging to assess the apparent fluorescence efficiency of FPs (DC-FEFP). By integrating high signal-to-noise ratio (SNR) FPs or self-labeling tags, this approach enables us to precisely quantify the fluorescence efficiency of various FPs at the single-molecule level in both living and fixed cells. With DC-FEFP, we found that mNeonGreen has the highest fluorescence efficiency among three commonly used FPs in living cells, as well as the significant impact of fixation on the photophysical properties of FPs. DC-FEFP is a high-precision and versatile tool for quantifying the fluorescence efficiency of FPs. It is capable of providing accurate information to calibrate protein stoichiometry based on single-molecule imaging.
Collapse
Affiliation(s)
- Xiaolong Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gege Qin
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute of Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Yutong Cui
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Yang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxin Liang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Jiang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhen Zhang
- Huairou Research Center, Institiute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuejiao Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghe Yuan
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
2
|
Krupinski-Ptaszek A, Makowski A, Mielnicka A, Pawłowska M, Tenne R, Lapkiewicz R. Super-resolution microscopy based on the inherent fluctuations of dye molecules. BIOMEDICAL OPTICS EXPRESS 2025; 16:910-921. [PMID: 40109524 PMCID: PMC11919343 DOI: 10.1364/boe.533263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Fluorescence microscopy is a critical tool across various disciplines, from materials science to biomedical research, yet it is limited by the diffraction limit of resolution. Advanced super-resolution techniques such as localization microscopy and stimulated-emission-depletion microscopy often demand considerable resources. These methods depend heavily on elaborate sample-staining, complex optical systems, or prolonged acquisition periods, and their application in 3D and multicolor imaging presents significant experimental challenges. In the current work, we provide a complete demonstration of a widely accessible super-resolution imaging approach capable of 3D and multicolor imaging based on super-resolution optical fluctuation imaging (SOFI). We replace the confocal pinhole with an array of single-photon avalanche diodes and use the microsecond-scale fluctuations of dye molecules as a contrast mechanism. This contrast is transformed into a super-resolved image using a robust and deterministic algorithm. Our technique utilizes natural fluctuations inherent to organic dyes, thereby it does not require engineering of the blinking statistics. Our robust, versatile super-resolution method opens the way to next-generation multimodal imaging and facilitates on-demand super-resolution within a confocal architecture.
Collapse
Affiliation(s)
| | - Adrian Makowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Laboratoire Kastler Brossel, ENS-PSL Université, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, Paris 75005, France
| | | | - Monika Pawłowska
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Ron Tenne
- Department of Physics, University of Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany
| | - Radek Lapkiewicz
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
3
|
Tashev SA, Euchner J, Yserentant K, Hänselmann S, Hild F, Chmielewicz W, Hummert J, Schwörer F, Tsopoulidis N, Germer S, Saßmannshausen Z, Fackler OT, Klingmüller U, Herten DP. ProDOL: a general method to determine the degree of labeling for staining optimization and molecular counting. Nat Methods 2024; 21:1708-1715. [PMID: 39117875 PMCID: PMC11399104 DOI: 10.1038/s41592-024-02376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/24/2024] [Indexed: 08/10/2024]
Abstract
Determining the label to target ratio, also known as the degree of labeling (DOL), is crucial for quantitative fluorescence microscopy and a high DOL with minimal unspecific labeling is beneficial for fluorescence microscopy in general. Yet robust, versatile and easy-to-use tools for measuring cell-specific labeling efficiencies are not available. Here we present a DOL determination technique named protein-tag DOL (ProDOL), which enables fast quantification and optimization of protein-tag labeling. With ProDOL various factors affecting labeling efficiency, including substrate type, incubation time and concentration, as well as sample fixation and cell type can be easily assessed. We applied ProDOL to investigate how human immunodeficiency virus-1 pathogenesis factor Nef modulates CD4 T cell activation measuring total and activated copy numbers of the adapter protein SLP-76 in signaling microclusters. ProDOL proved to be a versatile and robust tool for labeling calibration, enabling determination of labeling efficiencies, optimization of strategies and quantification of protein stoichiometry.
Collapse
Affiliation(s)
- Stanimir Asenov Tashev
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, Birmingham, UK
| | - Jonas Euchner
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Klaus Yserentant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Felix Hild
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Wioleta Chmielewicz
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Johan Hummert
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, Birmingham, UK
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
- PicoQuant GmbH, Berlin, Germany
| | - Florian Schwörer
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Germer
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Zoe Saßmannshausen
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk-Peter Herten
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- School of Chemistry, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, UK.
- Centre of Membrane Proteins and Receptors, The Universities of Birmingham and Nottingham, Birmingham, UK.
- Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Conradt F, Bezold V, Wiechert V, Huber S, Mecking S, Leitenstorfer A, Tenne R. Electric-Field Fluctuations as the Cause of Spectral Instabilities in Colloidal Quantum Dots. NANO LETTERS 2023; 23:9753-9759. [PMID: 37871158 PMCID: PMC10636921 DOI: 10.1021/acs.nanolett.3c02318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Spectral diffusion (SD) represents a substantial obstacle toward implementation of solid-state quantum emitters as a source of indistinguishable photons. By performing high-resolution emission spectroscopy for individual colloidal quantum dots at cryogenic temperatures, we prove the causal link between the quantum-confined Stark effect and SD. Statistically analyzing the wavelength of emitted photons, we show that increasing the sensitivity of the transition energy to an applied electric field results in amplified spectral fluctuations. This relation is quantitatively fit to a straightforward model, indicating the presence of a stochastic electric field on a microscopic scale, whose standard deviation is 9 kV/cm, on average. The current method will enable the study of SD in multiple types of quantum emitters such as solid-state defects or organic lead halide perovskite quantum dots, for which spectral instability is a critical barrier for applications in quantum sensing.
Collapse
Affiliation(s)
- Frieder Conradt
- Department
of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Vincent Bezold
- Department
of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Volker Wiechert
- Department
of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Steffen Huber
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefan Mecking
- Chair
of Chemical Materials Science, Department of Chemistry, University of Konstanz, D-78457 Konstanz, Germany
| | - Alfred Leitenstorfer
- Department
of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| | - Ron Tenne
- Department
of Physics and Center for Applied Photonics, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
5
|
Schröder T, Bange S, Schedlbauer J, Steiner F, Lupton JM, Tinnefeld P, Vogelsang J. How Blinking Affects Photon Correlations in Multichromophoric Nanoparticles. ACS NANO 2021; 15:18037-18047. [PMID: 34735135 DOI: 10.1021/acsnano.1c06649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A single chromophore can only emit a maximum of one single photon per excitation cycle. This limitation results in a phenomenon commonly referred to as photon antibunching (pAB). When multiple chromophores contribute to the fluorescence measured, the degree of pAB has been used as a metric to "count" the number of chromophores. But the fact that chromophores can switch randomly between bright and dark states also impacts pAB and can lead to incorrect chromophore numbers being determined from pAB measurements. By both simulations and experiment, we demonstrate how pAB is affected by independent and collective chromophore blinking, enabling us to formulate universal guidelines for correct interpretation of pAB measurements. We use DNA-origami nanostructures to design multichromophoric model systems that exhibit either independent or collective chromophore blinking. Two approaches are presented that can distinguish experimentally between these two blinking mechanisms. The first one utilizes the different excitation intensity dependence on the blinking mechanisms. The second approach exploits the fact that collective blinking implies energy transfer to a quenching moiety, which is a time-dependent process. In pulsed-excitation experiments, the degree of collective blinking can therefore be altered by time gating the fluorescence photon stream, enabling us to extract the energy-transfer rate to a quencher. The ability to distinguish between different blinking mechanisms is valuable in materials science, such as for multichromophoric nanoparticles like conjugated-polymer chains as well as in biophysics, for example, for quantitative analysis of protein assemblies by counting chromophores.
Collapse
Affiliation(s)
- Tim Schröder
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Sebastian Bange
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Jakob Schedlbauer
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Florian Steiner
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
| |
Collapse
|
6
|
Hummert J, Yserentant K, Fink T, Euchner J, Ho YX, Tashev SA, Herten DP. Photobleaching step analysis for robust determination of protein complex stoichiometries. Mol Biol Cell 2021; 32:ar35. [PMID: 34586828 PMCID: PMC8693960 DOI: 10.1091/mbc.e20-09-0568] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
The counting of discrete photobleaching steps in fluorescence microscopy is ideally suited to study protein complex stoichiometry in situ. The counting range of photobleaching step analysis has been significantly improved with more-sophisticated algorithms for step detection, albeit at an increasing computational cost and with the necessity for high-quality data. Here, we address concerns regarding robustness, automation, and experimental validation, optimizing both data acquisition and analysis. To make full use of the potential of photobleaching step analysis, we evaluate various labeling strategies with respect to their molecular brightness, photostability, and photoblinking. The developed analysis algorithm focuses on automation and computational efficiency. Moreover, we validate the developed methods with experimental data acquired on DNA origami labeled with defined fluorophore numbers, demonstrating counting of up to 35 fluorophores. Finally, we show the power of the combination of optimized trace acquisition and automated data analysis by counting labeled nucleoporin 107 in nuclear pore complexes of intact U2OS cells. The successful in situ application promotes this framework as a new resource enabling cell biologists to robustly determine the stoichiometries of molecular assemblies at the single-molecule level in an automated manner.
Collapse
Affiliation(s)
- Johan Hummert
- Institute of Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, B152TT UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, Birmingham, B15 2TT UK
| | - Klaus Yserentant
- Institute of Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, D-69120 Heidelberg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, B152TT UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, Birmingham, B15 2TT UK
| | - Theresa Fink
- Institute of Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jonas Euchner
- Institute of Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, B152TT UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, Birmingham, B15 2TT UK
| | - Yin Xin Ho
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, B152TT UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, Birmingham, B15 2TT UK
| | - Stanimir Asenov Tashev
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, B152TT UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, Birmingham, B15 2TT UK
| | - Dirk-Peter Herten
- Institute of Physical Chemistry, Heidelberg University, D-69120 Heidelberg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, B152TT UK
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, Birmingham, B15 2TT UK
| |
Collapse
|
7
|
Hummert J, Tashev SA, Herten DP. An update on molecular counting in fluorescence microscopy. Int J Biochem Cell Biol 2021; 135:105978. [PMID: 33865985 DOI: 10.1016/j.biocel.2021.105978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023]
Abstract
Quantitative assessment of protein complexes, such as receptor clusters in the context of cellular signalling, has become a pressing objective in cell biology. The advancements in the field of single molecule fluorescence microscopy have led to different approaches for counting protein copy numbers in various cellular structures. This has resulted in an increasing interest in robust calibration protocols addressing photophysical properties of fluorescent labels and the effect of labelling efficiencies. Here, we want to give an update on recent methods for protein counting with a focus on novel calibration protocols. In this context, we discuss different types of calibration samples and identify some of the challenges arising in molecular counting experiments. Some recently published applications offer potential approaches to tackle these challenges.
Collapse
Affiliation(s)
- Johan Hummert
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| | - Stanimir Asenov Tashev
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK.
| |
Collapse
|
8
|
Hedley GJ, Schröder T, Steiner F, Eder T, Hofmann FJ, Bange S, Laux D, Höger S, Tinnefeld P, Lupton JM, Vogelsang J. Picosecond time-resolved photon antibunching measures nanoscale exciton motion and the true number of chromophores. Nat Commun 2021; 12:1327. [PMID: 33637741 PMCID: PMC7910429 DOI: 10.1038/s41467-021-21474-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 11/27/2022] Open
Abstract
The particle-like nature of light becomes evident in the photon statistics of fluorescence from single quantum systems as photon antibunching. In multichromophoric systems, exciton diffusion and subsequent annihilation occurs. These processes also yield photon antibunching but cannot be interpreted reliably. Here we develop picosecond time-resolved antibunching to identify and decode such processes. We use this method to measure the true number of chromophores on well-defined multichromophoric DNA-origami structures, and precisely determine the distance-dependent rates of annihilation between excitons. Further, this allows us to measure exciton diffusion in mesoscopic H- and J-type conjugated-polymer aggregates. We distinguish between one-dimensional intra-chain and three-dimensional inter-chain exciton diffusion at different times after excitation and determine the disorder-dependent diffusion lengths. Our method provides a powerful lens through which excitons can be studied at the single-particle level, enabling the rational design of improved excitonic probes such as ultra-bright fluorescent nanoparticles and materials for optoelectronic devices.
Collapse
Affiliation(s)
| | - Tim Schröder
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München, Germany
| | - Florian Steiner
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München, Germany
| | - Theresa Eder
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Felix J Hofmann
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Sebastian Bange
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Dirk Laux
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Sigurd Höger
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München, Germany
| | - John M Lupton
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany
| | - Jan Vogelsang
- Institut für Experimentelle und Angewandte Physik and Regensburg Center for Ultrafast Nanoscopy (RUN), Universität Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Helmerich DA, Beliu G, Sauer M. Multiple-Labeled Antibodies Behave Like Single Emitters in Photoswitching Buffer. ACS NANO 2020; 14:12629-12641. [PMID: 32804475 DOI: 10.1021/acsnano.0c06099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degree of labeling (DOL) of antibodies has so far been optimized for high brightness and specific and efficient binding. The influence of the DOL on the blinking performance of antibodies used in direct stochastic optical reconstruction microscopy (dSTORM) has so far attained limited attention. Here, we investigated the spectroscopic characteristics of IgG antibodies labeled at DOLs of 1.1-8.3 with Alexa Fluor 647 (Al647) at the ensemble and single-molecule level. Multiple-Al647-labeled antibodies showed weak and strong quenching interactions in aqueous buffer but could all be used for dSTORM imaging with spatial resolutions of ∼20 nm independent of the DOL. Single-molecule fluorescence trajectories and photon antibunching experiments revealed that individual multiple-Al647-labeled antibodies show complex photophysics in aqueous buffer but behave as single emitters in photoswitching buffer independent of the DOL. We developed a model that explains the observed blinking of multiple-labeled antibodies and can be used for the development of improved fluorescent probes for dSTORM experiments.
Collapse
Affiliation(s)
- Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Escamilla-Ayala AA, Sannerud R, Mondin M, Poersch K, Vermeire W, Paparelli L, Berlage C, Koenig M, Chavez-Gutierrez L, Ulbrich MH, Munck S, Mizuno H, Annaert W. Super-resolution microscopy reveals majorly mono- and dimeric presenilin1/γ-secretase at the cell surface. eLife 2020; 9:56679. [PMID: 32631487 PMCID: PMC7340497 DOI: 10.7554/elife.56679] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer’s disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting ‘hotspots’ or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.
Collapse
Affiliation(s)
- Abril Angélica Escamilla-Ayala
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Magali Mondin
- Bordeaux Imaging Center, UMS 3420, CNRS-University of Bordeaux, US4 INSERM, Bordeaux, France
| | - Karin Poersch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wendy Vermeire
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Laura Paparelli
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Caroline Berlage
- Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Lucia Chavez-Gutierrez
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Laboratory of Proteolytic Mechanisms in Neurodegeneration, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Maximilian H Ulbrich
- Institute of Internal Medicine IV, Medical Center of the University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian Munck
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB Bio Imaging Core, Leuven, Belgium
| | - Hideaki Mizuno
- Laboratory of Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Heverlee, Belgium
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Erdel F, Rademacher A, Vlijm R, Tünnermann J, Frank L, Weinmann R, Schweigert E, Yserentant K, Hummert J, Bauer C, Schumacher S, Al Alwash A, Normand C, Herten DP, Engelhardt J, Rippe K. Mouse Heterochromatin Adopts Digital Compaction States without Showing Hallmarks of HP1-Driven Liquid-Liquid Phase Separation. Mol Cell 2020; 78:236-249.e7. [PMID: 32101700 PMCID: PMC7163299 DOI: 10.1016/j.molcel.2020.02.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/20/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The formation of silenced and condensed heterochromatin foci involves enrichment of heterochromatin protein 1 (HP1). HP1 can bridge chromatin segments and form liquid droplets, but the biophysical principles underlying heterochromatin compartmentalization in the cell nucleus are elusive. Here, we assess mechanistically relevant features of pericentric heterochromatin compaction in mouse fibroblasts. We find that (1) HP1 has only a weak capacity to form liquid droplets in living cells; (2) the size, global accessibility, and compaction of heterochromatin foci are independent of HP1; (3) heterochromatin foci lack a separated liquid HP1 pool; and (4) heterochromatin compaction can toggle between two “digital” states depending on the presence of a strong transcriptional activator. These findings indicate that heterochromatin foci resemble collapsed polymer globules that are percolated with the same nucleoplasmic liquid as the surrounding euchromatin, which has implications for our understanding of chromatin compartmentalization and its functional consequences. HP1 has only a weak capacity to form droplets in living cells Size, accessibility, and compaction of heterochromatin foci are independent of HP1 Heterochromatin compaction is “digital” and can toggle between two distinct states Methodological framework to assess hallmarks of phase separation in living cells
Collapse
Affiliation(s)
- Fabian Erdel
- LBME, Centre de Biologie Intégrative (CBI), CNRS, UPS, Toulouse, France; Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| | - Anne Rademacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Rifka Vlijm
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Tünnermann
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Lukas Frank
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Robin Weinmann
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Elisabeth Schweigert
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Klaus Yserentant
- Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Johan Hummert
- Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Caroline Bauer
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Ahmad Al Alwash
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | | | - Dirk-Peter Herten
- Department for Physical Chemistry, Heidelberg University, Heidelberg, Germany; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences and School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Johann Engelhardt
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany.
| |
Collapse
|
12
|
Wahl M, Röhlicke T, Kulisch S, Rohilla S, Krämer B, Hocke AC. Photon arrival time tagging with many channels, sub-nanosecond deadtime, very high throughput, and fiber optic remote synchronization. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:013108. [PMID: 32012615 DOI: 10.1063/1.5121412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2019] [Indexed: 05/23/2023]
Abstract
Time-Correlated Single Photon Counting (TCSPC) and time tagging of individual photon detections are powerful tools in many quantum optical experiments and other areas of applied physics. Using TCSPC, e.g., for the purpose of fluorescence lifetime measurements, is often limited in speed due to dead-time losses and pileup. We show that this limitation can be lifted by reducing the dead-time of the timing electronics to the absolute minimum imposed by the speed of the detector signals while maintaining high temporal resolution. A complementing approach to speedy data acquisition is parallelization by means of simultaneous readout of many detector channels. This puts high demands on the data throughput of the TCSPC system, especially in time tagging of individual photon arrivals. Here, we present a new design approach, supporting up to 16 input channels, an extremely short dead-time of 650 ps, very high time tagging throughput, and a timing resolution of 80 ps. In order to facilitate remote synchronization of multiple such instruments with highest precision, the new TCSPC electronics provide an interface for White Rabbit fiber optic networks. Beside fundamental research in the field of astronomy, such remote synchronization tasks arise routinely in quantum communication networks with node to node distances on the order of tens of kilometers. In addition to showing design features and benchmark results of new TCSPC electronics, we present application results from spectrally resolved and high-speed fluorescence lifetime imaging in medical research. We furthermore show how pulse-pileup occurring in the detector signals at high photon flux can be corrected for and how this data acquisition scheme performs in terms of accuracy and efficiency.
Collapse
Affiliation(s)
- Michael Wahl
- PicoQuant GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
| | - Tino Röhlicke
- PicoQuant GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
| | | | - Sumeet Rohilla
- PicoQuant GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
| | - Benedikt Krämer
- PicoQuant GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
| | - Andreas C Hocke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
13
|
Amgar D, Yang G, Tenne R, Oron D. Higher-Order Photon Correlation as a Tool To Study Exciton Dynamics in Quasi-2D Nanoplatelets. NANO LETTERS 2019; 19:8741-8748. [PMID: 31692360 PMCID: PMC7659036 DOI: 10.1021/acs.nanolett.9b03442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Colloidal semiconductor nanoplatelets, in which carriers are strongly confined only along one dimension, present fundamentally different excitonic properties than quantum dots, which support strong confinement in all three dimensions. In particular, multiple excitons strongly confined in just one dimension are free to rearrange in the lateral plane, reducing the probability for multibody collisions. Thus, while simultaneous multiple photon emission is typically quenched in quantum dots, in nanoplatelets its probability can be tuned according to size and shape. Here, we focus on analyzing multiexciton dynamics in individual CdSe/CdS nanoplatelets of various sizes through the measurement of second-, third-, and fourth-order photon correlations. For the first time, we can directly probe the dynamics of the two, three, and four exciton states at the single nanocrystal level. Remarkably, although higher orders of correlation vary substantially among the synthesis' products, they strongly correlate with the value of second order antibunching. The scaling of the higher-order moments with the degree of antibunching presents a small yet clear deviation from the accepted model of Auger recombination through binary collisions. Such a deviation suggests that many-body contributions are present already at the level of triexcitons. These findings highlight the benefit of high-order photon correlation spectroscopy as a technique to study multiexciton dynamics in colloidal semiconductor nanocrystals.
Collapse
|
14
|
Gruβmayer KS, Yserentant K, Herten DP. Photons in - numbers out: perspectives in quantitative fluorescence microscopy for in situ protein counting. Methods Appl Fluoresc 2019; 7:012003. [DOI: 10.1088/2050-6120/aaf2eb] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Sadoine M, Cerminara M, Gerrits M, Fitter J, Katranidis A. Cotranslational Incorporation into Proteins of a Fluorophore Suitable for smFRET Studies. ACS Synth Biol 2018; 7:405-411. [PMID: 29370697 DOI: 10.1021/acssynbio.7b00433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Single-molecule FRET (smFRET) is a powerful tool to investigate conformational changes of biological molecules. In general, smFRET studies require protein samples that are site-specifically double-labeled with a pair of donor and acceptor fluorophores. The common approaches to produce such samples cannot be applied when studying the synthesis and folding of the polypeptide chain on the ribosome. The best strategy is to incorporate two fluorescent amino acids cotranslationally using cell-free protein synthesis systems. Here, we demonstrate the cotranslational site-specific incorporation into a model protein of Atto633, a dye with excellent photophysical properties, suitable for single molecule spectroscopy, together with a second dye using a combination of the sense cysteine and the nonsense amber codon. In this work we show that cotranslational incorporation of good fluorophores into proteins is a viable strategy to produce suitable samples for smFRET studies.
Collapse
Affiliation(s)
- Mayuri Sadoine
- Forschungszentrum Jülich, Institute of Complex Systems
ICS-5, 52428 Jülich, Germany
| | - Michele Cerminara
- Forschungszentrum Jülich, Institute of Complex Systems
ICS-5, 52428 Jülich, Germany
| | - Michael Gerrits
- Biocatalysis
Group, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jörg Fitter
- Forschungszentrum Jülich, Institute of Complex Systems
ICS-5, 52428 Jülich, Germany
- RWTH Aachen University, I.Physikalisches
Institut (IA), 52062 Aachen, Germany
| | | |
Collapse
|