1
|
Gampp O, Kadavath H, Riek R. NMR tools to detect protein allostery. Curr Opin Struct Biol 2024; 86:102792. [PMID: 38428364 DOI: 10.1016/j.sbi.2024.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Allostery is a fundamental mechanism of cellular homeostasis by intra-protein communication between distinct functional sites. It is an internal process of proteins to steer interactions not only with each other but also with other biomolecules such as ligands, lipids, and nucleic acids. In addition, allosteric regulation is particularly important in enzymatic activities. A major challenge in structural and molecular biology today is unraveling allosteric sites in proteins, to elucidate the detailed mechanism of allostery and the development of allosteric drugs. Here we summarize the recently developed tools and approaches which enable the elucidation of regulatory hotspots and correlated motion in biomolecules, focusing primarily on solution-state nuclear magnetic resonance spectroscopy (NMR). These tools open an avenue towards a rational understanding of the mechanism of allostery and provide essential information for the design of allosteric drugs.
Collapse
Affiliation(s)
- Olivia Gampp
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland
| | - Harindranath Kadavath
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland; St. Jude Children's Research Hospital, 262 Danny Thomas Place, 38105 Memphis, Tennessee, USA. https://twitter.com/harijik
| | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, Switzerland.
| |
Collapse
|
2
|
Lasorsa A, Merzougui H, Cantrelle FX, Sicoli G, Dupré E, Hanoulle X, Belle V, Smet-Nocca C, Landrieu I. Magnetic resonance investigation of conformational responses of tau protein to specific phosphorylation. Biophys Chem 2024; 305:107155. [PMID: 38100856 DOI: 10.1016/j.bpc.2023.107155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Intrinsically disordered proteins (IDPs) are known to adopt many rapidly interconverting structures, making it difficult to pinpoint the specific conformational states that are relevant for their function. Tau is an important IDP, and its conformation is known to be affected by post-translational modifications (PTMs), such as phosphorylation. To investigate the effect of specific phosphorylation on full-length Tau's dynamic global conformation, we employed a combination of nuclear magnetic resonance-based paramagnetic relaxation interference methods and electron paramagnetic resonance spectroscopy. By reproducing the AT8 epitope, comprising exclusive phosphorylation at residues S202 and T205, we were able to identify conformations specific to phosphorylated Tau, which exhibited a tendency towards less compact states. These mechanistic details are of significance to understand the path leading from soluble Tau to the ordered structure of Tau fibers. This approach proved to be successful for studying the conformational changes of (phosphorylated) full-length Tau and can potentially be extended to the study of other IDPs that undergo various PTMs.
Collapse
Affiliation(s)
- Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.; CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Hamida Merzougui
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Giuseppe Sicoli
- Univ. Lille, CNRS UMR 8516 - LASIRE - Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Elian Dupré
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS, BIP - Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Caroline Smet-Nocca
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, F-59000 Lille, France.; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France.
| |
Collapse
|
3
|
Luo S, Wohl S, Zheng W, Yang S. Biophysical and Integrative Characterization of Protein Intrinsic Disorder as a Prime Target for Drug Discovery. Biomolecules 2023; 13:biom13030530. [PMID: 36979465 PMCID: PMC10046839 DOI: 10.3390/biom13030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Protein intrinsic disorder is increasingly recognized for its biological and disease-driven functions. However, it represents significant challenges for biophysical studies due to its high conformational flexibility. In addressing these challenges, we highlight the complementary and distinct capabilities of a range of experimental and computational methods and further describe integrative strategies available for combining these techniques. Integrative biophysics methods provide valuable insights into the sequence–structure–function relationship of disordered proteins, setting the stage for protein intrinsic disorder to become a promising target for drug discovery. Finally, we briefly summarize recent advances in the development of new small molecule inhibitors targeting the disordered N-terminal domains of three vital transcription factors.
Collapse
Affiliation(s)
- Shuqi Luo
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Samuel Wohl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwei Zheng
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA
- Correspondence: (W.Z.); (S.Y.)
| | - Sichun Yang
- Center for Proteomics and Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: (W.Z.); (S.Y.)
| |
Collapse
|
4
|
Feichtinger M, Beier A, Migotti M, Schmid M, Bokhovchuk F, Chène P, Konrat R. Long-range structural preformation in yes-associated protein precedes encounter complex formation with TEAD. iScience 2022; 25:104099. [PMID: 35378854 PMCID: PMC8976148 DOI: 10.1016/j.isci.2022.104099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/25/2022] [Accepted: 03/15/2022] [Indexed: 11/22/2022] Open
Abstract
Yes-associated protein (YAP) is a partly intrinsically disordered protein (IDP) that plays a major role as the downstream element of the Hippo pathway. Although the structures of the complex between TEA domain transcription factors (TEADs) and the TEAD-binding domain of YAP are already well characterized, its apo state and the binding mechanism with TEADs are still not clearly defined. Here we characterize via a combination of different NMR approaches with site-directed mutagenesis and affinity measurements the intrinsically disordered solution state of apo YAP. Our results provide evidence that the apo state of YAP adopts several compact conformations that may facilitate the formation of the YAP:TEAD complex. The interplay between local secondary structure element preformation and long-range co-stabilization of these structured elements precedes the encounter complex formation with TEAD and we, therefore, propose that TEAD binding proceeds largely via conformational selection of the preformed compact substates displaying at least nanosecond lifetimes. Secondary structure elements are preformed in apo YAP Preformation of secondary structure elements is co-dependent Apo YAP exhibits long-range structural compaction YAP compaction has a kinetic contribution to the YAP:TEAD formation
Collapse
Affiliation(s)
- Michael Feichtinger
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Andreas Beier
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Mario Migotti
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Matthias Schmid
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - Fedir Bokhovchuk
- Ichnos Sciences SA, Route de la Corniche 5A, 1066 Epalinges, Switzerland
| | - Patrick Chène
- Novartis Pharma AG, Postfach WSJ 386.4, 4002 Basel, Switzerland
| | - Robert Konrat
- Department of Computational and Structural Biology, Max Perutz Labs, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Bonucci A, Palomino-Schätzlein M, Malo de Molina P, Arbe A, Pierattelli R, Rizzuti B, Iovanna JL, Neira JL. Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1. Front Mol Biosci 2021; 8:684622. [PMID: 34291085 PMCID: PMC8287036 DOI: 10.3389/fmolb.2021.684622] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/22/2021] [Indexed: 01/02/2023] Open
Abstract
The intracellular environment is crowded with macromolecules, including sugars, proteins and nucleic acids. In the cytoplasm, crowding effects are capable of excluding up to 40% of the volume available to any macromolecule when compared to dilute conditions. NUPR1 is an intrinsically disordered protein (IDP) involved in cell-cycle regulation, stress-cell response, apoptosis processes, DNA binding and repair, chromatin remodeling and transcription. Simulations of molecular crowding predict that IDPs can adopt compact states, as well as more extended conformations under crowding conditions. In this work, we analyzed the conformation and dynamics of NUPR1 in the presence of two synthetic polymers, Ficoll-70 and Dextran-40, which mimic crowding effects in the cells, at two different concentrations (50 and 150 mg/ml). The study was carried out by using a multi-spectroscopic approach, including: site-directed spin labelling electron paramagnetic resonance spectroscopy (SDSL-EPR), nuclear magnetic resonance spectroscopy (NMR), circular dichroism (CD), small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). SDSL-EPR spectra of two spin-labelled mutants indicate that there was binding with the crowders and that the local dynamics of the C and N termini of NUPR1 were partially affected by the crowders. However, the overall disordered nature of NUPR1 did not change substantially in the presence of the crowders, as shown by circular dichroism CD and NMR, and further confirmed by EPR. The changes in the dynamics of the paramagnetic probes appear to be related to preferred local conformations and thus crowding agents partially affect some specific regions, further pinpointing that NUPR1 flexibility has a key physiological role in its activity.
Collapse
Affiliation(s)
- Alessio Bonucci
- CERM & Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (Florence), Italy
| | | | - Paula Malo de Molina
- Centro de Física de Materiales (CFM), CSIC-UPV/EHU, San Sebastián, Spain.,IKERBASQUE-Basque Foundation for Science, Bilbao, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CFM), CSIC-UPV/EHU, San Sebastián, Spain
| | - Roberta Pierattelli
- CERM & Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (Florence), Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Rende, Italy.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.,IDIBE, Universidad Miguel Hernández, Elche (Alicante), Spain
| |
Collapse
|
6
|
Structural Constraint of Osteopontin Facilitates Efficient Binding to CD44. Biomolecules 2021; 11:biom11060813. [PMID: 34070790 PMCID: PMC8228714 DOI: 10.3390/biom11060813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Since the original description in 1996, the interaction between the cytokine osteopontin (OPN) and the homing receptor CD44 has been extensively studied in cancer, inflammation, bone remodeling, and various other conditions. Alternative splicing and extensive posttranslational modifications by both binding partners, as well as the possibility for lateral recruitment of additional membrane receptors or soluble co-ligands into a complex have left the exact molecular requirements for high-affinity OPN-CD44 binding unresolved. We now report that there is a moderate engagement between the unmodified molecules, which results in curved double-reciprocal plots for OPN titration, suggesting the existence of two binding sites or two binding conformations. Structural constraint of OPN, by immobilization or by addition of heparin, is required for its strong ligation of CD44. Prior literature provides evidence that heparin binding to OPN prompts the unfolding of a core element in the protein. This conformational adjustment may be essential for efficient CD44 interaction. The integrin α9β1 seems to compete with the OPN-CD44 engagement, while the integrin αVβ3 reflects additive binding, suggesting that the CD44 contact sites on OPN are downstream of the RGD motif but overlap with the SVVYGLR domain. Hyaluronate has no effect, placing the relevant domain on CD44 downstream of the N-terminus.
Collapse
|
7
|
Mateos B, Holzinger J, Conrad-Billroth C, Platzer G, Żerko S, Sealey-Cardona M, Anrather D, Koźmiński W, Konrat R. Hyperphosphorylation of Human Osteopontin and Its Impact on Structural Dynamics and Molecular Recognition. Biochemistry 2021; 60:1347-1355. [PMID: 33876640 PMCID: PMC8154273 DOI: 10.1021/acs.biochem.1c00050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/13/2021] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation is an abundant post-translational modification (PTM) and an essential modulator of protein functionality in living cells. Intrinsically disordered proteins (IDPs) are particular targets of PTM protein kinases due to their involvement in fundamental protein interaction networks. Despite their dynamic nature, IDPs are far from having random-coil conformations but exhibit significant structural heterogeneity. Changes in the molecular environment, most prominently in the form of PTM via phosphorylation, can modulate these structural features. Therefore, how phosphorylation events can alter conformational ensembles of IDPs and their interactions with binding partners is of great interest. Here we study the effects of hyperphosphorylation on the IDP osteopontin (OPN), an extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular recognition events.
Collapse
Affiliation(s)
- Borja Mateos
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Julian Holzinger
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Gerald Platzer
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| | - Szymon Żerko
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | | | - Dorothea Anrather
- Mass
Spectrometry Facility, Max Perutz Laboratories, Vienna BioCenter Campus 5, Dr. Bohr
Gasse 3, 1030 Vienna, Austria
| | - Wiktor Koźmiński
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02093 Warsaw, Poland
| | - Robert Konrat
- Department
of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna BioCenter Campus 5, 1030 Vienna, Austria
| |
Collapse
|
8
|
Bugge K, Brakti I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skriver K, Kragelund BB. Interactions by Disorder - A Matter of Context. Front Mol Biosci 2020; 7:110. [PMID: 32613009 PMCID: PMC7308724 DOI: 10.3389/fmolb.2020.00110] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms depend on timely and organized interactions between proteins linked in interactomes of high complexity. The recent increased precision by which protein interactions can be studied, and the enclosure of intrinsic structural disorder, suggest that it is time to zoom out and embrace protein interactions beyond the most central points of physical encounter. The present paper discusses protein-protein interactions in the view of structural disorder with an emphasis on flanking regions and contexts of disorder-based interactions. Context constitutes an overarching concept being of physicochemical, biomolecular, and physiological nature, but it also includes the immediate molecular context of the interaction. For intrinsically disordered proteins, which often function by exploiting short linear motifs, context contributes in highly regulatory and decisive manners and constitute a yet largely unrecognized source of interaction potential in a multitude of biological processes. Through selected examples, this review emphasizes how multivalency, charges and charge clusters, hydrophobic patches, dynamics, energetic frustration, and ensemble redistribution of flanking regions or disordered contexts are emerging as important contributors to allosteric regulation, positive and negative cooperativity, feedback regulation and negative selection in binding. The review emphasizes that understanding context, and in particular the role the molecular disordered context and flanking regions take on in protein interactions, constitute an untapped well of energetic modulation potential, also of relevance to drug discovery and development.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Inna Brakti
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B. Fernandes
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper E. Dreier
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe E. Lundsgaard
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan G. Olsen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Kawasaki R, Tate SI. Impact of the Hereditary P301L Mutation on the Correlated Conformational Dynamics of Human Tau Protein Revealed by the Paramagnetic Relaxation Enhancement NMR Experiments. Int J Mol Sci 2020; 21:ijms21113920. [PMID: 32486218 PMCID: PMC7313075 DOI: 10.3390/ijms21113920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Tau forms intracellular insoluble aggregates as a neuropathological hallmark of Alzheimer’s disease. Tau is largely unstructured, which complicates the characterization of the tau aggregation process. Recent studies have demonstrated that tau samples two distinct conformational ensembles, each of which contains the soluble and aggregation-prone states of tau. A shift to populate the aggregation-prone ensemble may promote tau fibrillization. However, the mechanism of this ensemble transition remains elusive. In this study, we explored the conformational dynamics of a tau fragment by using paramagnetic relaxation enhancement (PRE) and interference (PRI) NMR experiments. The PRE correlation map showed that tau is composed of segments consisting of residues in correlated motions. Intriguingly, residues forming the β-structures in the heparin-induced tau filament coincide with residues in these segments, suggesting that each segment behaves as a structural unit in fibrillization. PRI data demonstrated that the P301L mutation exclusively alters the transiently formed tau structures by changing the short- and long-range correlated motions among residues. The transient conformations of P301L tau expose the amyloid motif PHF6 to promote tau self-aggregation. We propose the correlated motions among residues within tau determine the population sizes of the conformational ensembles, and perturbing the correlated motions populates the aggregation-prone form.
Collapse
Affiliation(s)
- Ryosuke Kawasaki
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
| | - Shin-ichi Tate
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan;
- Department of Mathematical and Life Sciences, Graduate School of the Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Correspondence: ; Tel.: +81-82-424-7387
| |
Collapse
|
10
|
Bhattacharya S, Xu L, Thompson D. Long-range Regulation of Partially Folded Amyloidogenic Peptides. Sci Rep 2020; 10:7597. [PMID: 32371882 PMCID: PMC7200734 DOI: 10.1038/s41598-020-64303-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/15/2020] [Indexed: 01/20/2023] Open
Abstract
Neurodegeneration involves abnormal aggregation of intrinsically disordered amyloidogenic peptides (IDPs), usually mediated by hydrophobic protein-protein interactions. There is mounting evidence that formation of α-helical intermediates is an early event during self-assembly of amyloid-β42 (Aβ42) and α-synuclein (αS) IDPs in Alzheimer’s and Parkinson’s disease pathogenesis, respectively. However, the driving force behind on-pathway molecular assembly of partially folded helical monomers into helical oligomers assembly remains unknown. Here, we employ extensive molecular dynamics simulations to sample the helical conformational sub-spaces of monomeric peptides of both Aβ42 and αS. Our computed free energies, population shifts, and dynamic cross-correlation network analyses reveal a common feature of long-range intra-peptide modulation of partial helical folds of the amyloidogenic central hydrophobic domains via concerted coupling with their charged terminal tails (N-terminus of Aβ42 and C-terminus of αS). The absence of such inter-domain fluctuations in both fully helical and completely unfolded (disordered) states suggests that long-range coupling regulates the dynamicity of partially folded helices, in both Aβ42 and αS peptides. The inter-domain coupling suggests a form of intra-molecular allosteric regulation of the aggregation trigger in partially folded helical monomers. This approach could be applied to study the broad range of amyloidogenic peptides, which could provide a new path to curbing pathogenic aggregation of partially folded conformers into oligomers, by inhibition of sites far from the hydrophobic core.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Liang Xu
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
11
|
Mateos B, Conrad-Billroth C, Schiavina M, Beier A, Kontaxis G, Konrat R, Felli IC, Pierattelli R. The Ambivalent Role of Proline Residues in an Intrinsically Disordered Protein: From Disorder Promoters to Compaction Facilitators. J Mol Biol 2019; 432:3093-3111. [PMID: 31794728 DOI: 10.1016/j.jmb.2019.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable three-dimensional structure, but rather adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. In IDPs, proline residues are significantly enriched. Given their unique physicochemical and structural properties, a more detailed understanding of their potential role in stabilizing partially folded states in IDPs is highly desirable. Nuclear magnetic resonance (NMR) spectroscopy, and in particular 13C-detected NMR, is especially suitable to address these questions. We applied a 13C-detected strategy to study Osteopontin, a largely disordered IDP with a central compact region. By using the exquisite sensitivity and spectral resolution of these novel techniques, we gained unprecedented insight into cis-Pro populations, their local structural dynamics, and their role in mediating long-range contacts. Our findings clearly call for a reassessment of the structural and functional role of proline residues in IDPs. The emerging picture shows that proline residues have ambivalent structural roles. They are not simply disorder promoters but rather can, depending on the primary sequence context, act as nucleation sites for structural compaction in IDPs. These unexpected features provide a versatile mechanistic toolbox to enrich the conformational ensembles of IDPs with specific features for adapting to changing molecular and cellular environments.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Clara Conrad-Billroth
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Marco Schiavina
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Andreas Beier
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, University of Vienna, Max Perutz Labs, Vienna Biocenter Campus 5, 1030 Vienna, Austria.
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
12
|
Neira JL, Palomino-Schätzlein M, Ricci C, Ortore MG, Rizzuti B, Iovanna JL. Dynamics of the intrinsically disordered protein NUPR1 in isolation and in its fuzzy complexes with DNA and prothymosin α. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140252. [PMID: 31325636 DOI: 10.1016/j.bbapap.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) explore diverse conformations in their free states and, a few of them, also in their molecular complexes. This functional plasticity is essential for the function of IDPs, although their dynamics in both free and bound states is poorly understood. NUPR1 is a protumoral multifunctional IDP, activated during the acute phases of pancreatitis. It interacts with DNA and other IDPs, such as prothymosin α (ProTα), with dissociation constants of ~0.5 μM, and a 1:1 stoichiometry. We studied the structure and picosecond-to-nanosecond (ps-ns) dynamics by using both NMR and SAXS in: (i) isolated NUPR1; (ii) the NUPR1/ProTα complex; and (iii) the NUPR1/double stranded (ds) GGGCGCGCCC complex. Our SAXS findings show that NUPR1 remained disordered when bound to either partner, adopting a worm-like conformation; the fuzziness of bound NUPR1 was also pinpointed by NMR. Residues with the largest values of the relaxation rates (R1, R1ρ, R2 and ηxy), in the free and bound species, were mainly clustered around the 30s region of the sequence, which agree with one of the protein hot-spots already identified by site-directed mutagenesis. Not only residues in this region had larger relaxation rates, but they also moved slower than the rest of the molecule, as indicated by the reduced spectral density approach (RSDA). Upon binding, the energy landscape of NUPR1 was not funneled down to a specific, well-folded conformation, but rather its backbone flexibility was kept, with distinct motions occurring at the hot-spot region.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche (Alicante), Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.
| | | | - Caterina Ricci
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, via Brecce Bianche, 60131 Ancona, Italy
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France
| |
Collapse
|
13
|
Hartl M, Schneider R. A Unique Family of Neuronal Signaling Proteins Implicated in Oncogenesis and Tumor Suppression. Front Oncol 2019; 9:289. [PMID: 31058089 PMCID: PMC6478813 DOI: 10.3389/fonc.2019.00289] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulated by protein kinase C-phosphorylation or by binding to the calcium sensor calmodulin (CaM). GAP43, MARCKS, and BASP1 are also expressed in non-neuronal cells, where they may have important functions to manage cytoskeleton architecture, and in case of MARCKS and BASP1 to act as cofactors in transcriptional regulation. During neoplastic cell transformation, the proteins reveal differential expression in normal vs. tumor cells, and display intrinsic tumor promoting or tumor suppressive activities. Whereas GAP43 and MARCKS are oncogenic, tumor suppressive functions have been ascribed to BASP1 and in part to MARCKS depending on the cell type. Like MARCKS, the myristoylated BASP1 protein is localized both in the cytoplasm and in the cell nucleus. Nuclear BASP1 participates in gene regulation converting the Wilms tumor transcription factor WT1 from an oncoprotein into a tumor suppressor. The BASP1 gene is downregulated in many human tumor cell lines particularly in those derived from leukemias, which display elevated levels of WT1 and of the major cancer driver MYC. BASP1 specifically inhibits MYC-induced cell transformation in cultured cells. The tumor suppressive functions of BASP1 and MARCKS could be exploited to expand the spectrum of future innovative therapeutic approaches to inhibit growth and viability of susceptible human tumors.
Collapse
Affiliation(s)
- Markus Hartl
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Rainer Schneider
- Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Mateos B, Konrat R, Pierattelli R, Felli IC. NMR Characterization of Long-Range Contacts in Intrinsically Disordered Proteins from Paramagnetic Relaxation Enhancement in 13 C Direct-Detection Experiments. Chembiochem 2018; 20:335-339. [PMID: 30407719 DOI: 10.1002/cbic.201800539] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable 3D structure and are able to adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. A widely used experimental NMR spectroscopy approach to study long-range contacts in IDPs exploits paramagnetic effects, and 1 H detection experiments are generally used to determine paramagnetic relaxation enhancement (PRE) for amide protons. However, under physiological conditions, exchange broadening hampers the detection of solvent-exposed amide protons, which reduces the content of information available. Herein, we present an experimental approach based on direct carbon detection of PRE that provides improved resolution, reduced sensitivity to exchange broadening, and complementary information derived from the use of different starting polarization sources.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
15
|
Fuxreiter M. Fold or not to fold upon binding - does it really matter? Curr Opin Struct Biol 2018; 54:19-25. [PMID: 30340123 DOI: 10.1016/j.sbi.2018.09.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022]
Abstract
Protein interactions are usually determined by well-defined contact patterns. In this scenario, structuring of the interface is a prerequisite, which takes place prior or coupled to binding. Recent data, however, indicate plasticity of the templated folding pathway as well as considerable variations: polymorphism or dynamics in the bound-state. Conformational fluctuations in both cases are modulated by non-native, transient contacts, which complement suboptimal binding motifs to improve affinity. Here I discuss both templated folding and fuzzy binding mechanisms and propose a uniform scheme.
Collapse
Affiliation(s)
- Monika Fuxreiter
- MTA-DE Laboratory of Protein Dynamics, Department of Biochemistry and Molecular Biology, University of Debrecen, Hungary.
| |
Collapse
|
16
|
Beier A, Schwarz TC, Kurzbach D, Platzer G, Tribuzio F, Konrat R. Modulation of Correlated Segment Fluctuations in IDPs upon Complex Formation as an Allosteric Regulatory Mechanism. J Mol Biol 2018; 430:2439-2452. [PMID: 29733855 DOI: 10.1016/j.jmb.2018.04.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022]
Abstract
Molecular recognition of and by intrinsically disordered proteins (IDPs) is an intriguing and still largely elusive phenomenon. Typically, protein recognition involving IDPs requires either folding upon binding or, alternatively, the formation of "fuzzy complexes." Here we show via correlation analyses of paramagnetic relaxation enhancement data unprecedented and striking alterations of the concerted fluctuations within the conformational ensemble of IDPs upon ligand binding. We study the binding of α-synuclein to calmodulin, a ubiquitous calcium-binding protein, and the binding of the extracellular matrix IDP osteopontin to heparin, a mimic of the extracellular matrix ligand hyaluronic acid. In both cases, binding leads to reduction of correlated long-range motions in these two IDPs and thus indicates a loosening of structural compaction upon binding. Most importantly, however, the simultaneous presence of correlated and anti-correlated fluctuations in IDPs suggests the prevalence of "energetic frustration" and provides an explanation for the puzzling observation of disordered allostery in IDPs.
Collapse
Affiliation(s)
- Andreas Beier
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Thomas C Schwarz
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Dennis Kurzbach
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Gerald Platzer
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Francesca Tribuzio
- Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Dr-Bohr-Gasse 9, A-1030 Vienna, Austria; Department of Computational and Structural Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
| |
Collapse
|
17
|
Kizilsavas G, Ledolter K, Kurzbach D. Hydrophobic Collapse of the Intrinsically Disordered Transcription Factor Myc Associated Factor X. Biochemistry 2017; 56:5365-5372. [DOI: 10.1021/acs.biochem.7b00679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gönül Kizilsavas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Karin Ledolter
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University Vienna, Campus Vienna BioCenter 5, 1030 Vienna, Austria
| | - Dennis Kurzbach
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules (LBM), Paris, France
| |
Collapse
|