1
|
Oliveira AC, Filipe HAL, Geraldes CF, Voth GA, Moreno MJ, Loura LMS. Interaction of MRI Contrast Agent [Gd(DOTA)] - with Lipid Membranes: A Molecular Dynamics Study. Inorg Chem 2024; 63:10897-10914. [PMID: 38795015 PMCID: PMC11186012 DOI: 10.1021/acs.inorgchem.4c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Contrast agents are important imaging probes in clinical MRI, allowing the identification of anatomic changes that otherwise would not be possible. Intensive research on the development of new contrast agents is being made to image specific pathological markers or sense local biochemical changes. The most widely used MRI contrast agents are based on gadolinium(III) complexes. Due to their very high charge density, they have low permeability through tight biological barriers such as the blood-brain barrier, hampering their application in the diagnosis of neurological disorders. In this study, we explore the interaction between the widely used contrast agent [Gd(DOTA)]- (Dotarem) and POPC lipid bilayers by means of molecular dynamics simulations. This metal complex is a standard reference where several chemical modifications have been introduced to improve key properties such as bioavailability and targeting. The simulations unveil detailed insights into the agent's interaction with the lipid bilayer, offering perspectives beyond experimental methods. Various properties, including the impact on global and local bilayer properties, were analyzed. As expected, the results indicate a low partition coefficient (KP) and high permeation barrier for this reference compound. Nevertheless, favorable interactions are established with the membrane leading to moderately long residence times. While coordination of one inner-sphere water molecule is maintained for the membrane-associated chelate, the physical-chemical attributes of [Gd(DOTA)]- as a MRI contrast agent are affected. Namely, increases in the rotational correlation times and in the residence time of the inner-sphere water are observed, with the former expected to significantly increase the water proton relaxivity. This work establishes a reference framework for the use of simulations to guide the rational design of new contrast agents with improved relaxivity and bioavailability and for the development of liposome-based formulations for use as imaging probes or theranostic agents.
Collapse
Affiliation(s)
- Alexandre C. Oliveira
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hugo A. L. Filipe
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- CPIRN-IPG—Center
of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Carlos F.G.C. Geraldes
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Department
of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal
- CIBIT/ICNAS
- Instituto de Ciências Nucleares Aplicadas à Saúde, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, James Franck
Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Maria João Moreno
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Department
of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC−Center
for Neuroscience and Cell Biology, University
of Coimbra, 3004-517 Coimbra, Portugal
| | - Luís M. S. Loura
- Coimbra
Chemistry Centre, Institute of Molecular
Sciences (CQC-IMS), 3004-535 Coimbra, Portugal
- Faculty
of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC−Center
for Neuroscience and Cell Biology, University
of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
2
|
Cheng V, Conboy JC. Inhibitory Effect of Lanthanides on Native Lipid Flip-Flop. J Phys Chem B 2022; 126:7651-7663. [PMID: 36129784 DOI: 10.1021/acs.jpcb.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of ytterbium ions (Yb3+), a commonly used paramagnetic NMR chemical shift reagent, on the physical properties and flip-flop kinetics of dipalmitoylphosphatidylcholine (DPPC) planar supported lipid bilayers (PSLBs) was investigated. Langmuir isotherm studies revealed that Yb3+ interacts strongly with the phosphate headgroup of DPPC, evidenced by the increases in shear and compression moduli. Using sum-frequency vibrational spectroscopy, changes in the acyl chain ordering and phase transition temperature were also observed, consistent with Yb3+ interacting with the phosphate headgroup of DPPC. The changes in the physical properties of the membrane were also observed to be concentration dependent, with more pronounced modification observed at low (50 μM) Yb3+ concentrations compared to 6.5 mM Tb3+, suggesting a cross-linking mechanism between adjacent DPPC lipids. Additionally, the changes in membrane packing and phase transition temperatures in the presence of Tris buffer suggested that a putative Yb(Tris)3+ complex forms that coordinates to the PC headgroup. The kinetics of DPPC flip-flop in the gel and liquid crystalline (lc) phases were substantially inhibited in the presence of Yb3+, regardless of the Yb3+ concentration. Analysis of the flip-flop kinetics under the framework of transition state theory revealed that the free energy barrier to flip-flop in both the gel and lc phases was substantial increased over a pure DPPC membrane. In the gel phase, the trend in the free energy barrier appeared to follow the trend in the shear moduli, suggesting that the Yb3+-DPPC headgroup interaction was driving the increase in the activation free energy barrier. In the lc phase, activation free energies of DPPC flip-flop in the presence of 50 μM or 6.5 mM Yb3+ were found to mirror the free energies of TEMPO-DPPC flip-flop, leading to the conclusion that the strong interaction between Yb3+ and the PC headgroup was essentially manifested as a headgroup charge modification. These studies illustrate that the presence of the lanthanide Yb3+ results in significant modification to the lipid membrane physical properties and, more importantly, results in a pronounced inhibition of native lipid flip-flop.
Collapse
Affiliation(s)
- Victoria Cheng
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John C Conboy
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Gonzalez MA, Bresme F. Membrane–Ion Interactions Modify the Lipid Flip-Flop Dynamics of Biological Membranes: A Molecular Dynamics Study. J Phys Chem B 2020; 124:5156-5162. [DOI: 10.1021/acs.jpcb.0c04059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miguel A. Gonzalez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, U.K
| |
Collapse
|
4
|
Isabettini S, Massabni S, Hodzic A, Durovic D, Kohlbrecher J, Ishikawa T, Fischer P, Windhab EJ, Walde P, Kuster S. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. Phys Chem Chem Phys 2018; 19:20991-21002. [PMID: 28745755 DOI: 10.1039/c7cp03994h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide ion (Ln3+) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy3+ and parallel alignment of those containing Tm3+. Moreover, samples with chelated Yb3+ were more alignable than the Tm3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.
Collapse
Affiliation(s)
- Stéphane Isabettini
- Laboratory of Food Process Engineering, ETH Zürich, Schmelzbergstrasse 7, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang S, Bresme F. Simulation Studies on the Lipid Interaction and Conformation of Novel Drug-Delivery Pseudopeptidic Polymers. J Phys Chem B 2017; 121:9113-9125. [PMID: 28870066 DOI: 10.1021/acs.jpcb.7b06562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudopeptides based on poly(l-lysine isophthalamide) backbone have emerged as promising drug delivery candidates due to their pH-activated membrane disruption ability. To gain molecular understanding on these novel polymeric species, we have constructed force-field parameters and simulated the behaviors of polymers with and without phenylalanine grafted as side chains under conditions compatible with different pHs. The free energy changes upon polymer permeation through membrane were calculated using the umbrella sampling technique. We show that both polymers with and without grafts interact better with the membrane under conditions compatible with lower pH. The conformational states of the polymers were investigated in water and at a water-membrane interface. On the basis of Markov state modeling results, we propose a possible advantage of the grafted polymer over the ungrafted polymer for membrane rupture because of its quicker conformational rearrangement kinetics.
Collapse
Affiliation(s)
- Shuzhe Wang
- Department of Chemistry, Imperial College London , SW7 2AZ London, U.K
| | - Fernando Bresme
- Department of Chemistry, Imperial College London , SW7 2AZ London, U.K
| |
Collapse
|