1
|
Ossadnik D, Qi M, Voss J, Keller K, Yulikov M, Godt A. A Set of Three Gd III Spin Labels with Methanethiosulfonyl Groups for Bioconjugation Covering a Wide Range of EPR Line Widths. J Org Chem 2025; 90:1847-1876. [PMID: 39854636 DOI: 10.1021/acs.joc.4c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Spin labels based on GdIII complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of GdIII complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful. We prepared three GdIII complexes with DO3APic, NO3Pic, and PyMTA as the basic ligand units. They cover a wide range of EPR line widths but have in common a cysteine-targeting methanethiosulfonyl (MTS) group connected to a pyridine ring, which is an intrinsic part of the ligand. The reaction with a cysteine-containing pentapeptide (0.45 mM in the peptide, pH ∼ 7) was complete within 90 s and chemoselective. The MTS group hydrolyzed with half-lives of >24, 8, 2, and 1 h at pH 5, 6, 7, and 8, respectively. The structurally related nicotinic acid-substituted disulfide (NDS) group was found to be hydrolytically much more stable. However, the MTS spin label clearly won the competition for the pentapeptide over the NDS spin label. If high reactivity is essential, MTS is clearly the better choice.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Jona Voss
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Katharina Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| |
Collapse
|
2
|
Kuzin S, Yulikov M. RIDME Spectroscopy: New Topics Beyond the Determination of Electron Spin-Spin Distances. J Phys Chem Lett 2025; 16:1024-1037. [PMID: 39841411 PMCID: PMC11789150 DOI: 10.1021/acs.jpclett.4c02667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.g., in relation to qubits research, to probe distributions of exchange couplings, useful for the design of molecular magnets, and to determine important details of electron spin interactions with the nuclear spin bath, which is related to the dynamic nuclear polarization and soft materials research. We also anticipate interesting applications of RIDME in the structural biology of biopolymers as well as their interactions, aggregation, and phase separation. It is not excluded that in the near future such "nonconventional" topics could grow in number and evolve into the main application area of RIDME.
Collapse
Affiliation(s)
- Sergei Kuzin
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland
| | - Maxim Yulikov
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Wilson CB, Qi M, Han S, Sherwin MS. Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields. J Phys Chem Lett 2023; 14:10578-10584. [PMID: 37976425 PMCID: PMC10694812 DOI: 10.1021/acs.jpclett.3c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Favorable relaxation processes, high-field spectral properties, and biological compatibility have made spin-7/2 Gd3+-based spin labels an increasingly popular choice for protein structure studies using high-field electron paramagnetic resonance. However, high-field relaxation and decoherence in ensembles of half-integer high-spin systems, such as Gd3+, remain poorly understood. We report spin-lattice (T1) and phase memory (TM) relaxation times at 8.6 T (240 GHz), and we present the first comprehensive model of high-field, high-spin decoherence accounting for both the electron spin concentration and temperature. The model includes four principal mechanisms driving decoherence: energy-conserving electron spin flip-flops, direct "T1" spin-lattice relaxation-driven electron spin flip processes, indirect T1-driven flips of nearby electron spins, and nuclear spin flip-flops. Mechanistic insight into decoherence can inform the design of experiments making use of Gd3+ as spin probes or relaxivity agents and can be used to measure local average interspin distances as long as 17 nm.
Collapse
Affiliation(s)
- C. Blake Wilson
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, 33615 Bielefeld, Germany
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Mark S. Sherwin
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Ossadnik D, Kuzin S, Qi M, Yulikov M, Godt A. A Gd III-Based Spin Label at the Limits for Linewidth Reduction through Zero-Field Splitting Optimization. Inorg Chem 2023; 62:408-432. [PMID: 36525400 DOI: 10.1021/acs.inorgchem.2c03531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The remarkably narrow central line in the electron paramagnetic resonance spectrum and the very weak zero-field splitting (ZFS) make [GdIII(NO3Pic)] ([GdIII(TPATCN)]) an attractive starting point for the development of spin labels. For retaining the narrow line of this parent complex when modifying it with a substituent enabling bioconjugation, alkyl with a somehow remote functional group as a substituent at the picolinate moiety was found to be highly suitable because ZFS stayed weak, even if the threefold axial symmetry was broken. The ZFS is so weak that hyperfine coupling and/or g-value variations noticeably determine the linewidth in Q band and higher fields when the biomolecule is protonated, which is the standard situation, and in W band and higher fields for the protonated complex in a fully deuterated surrounding. Clearly, [NDSE-{GdIII(NO3Pic)}], a spin label targeting the cysteines in a peptide, is at a limit of linewidth narrowing through ZFS minimization. The labeling reaction is highly chemoselective and, applied to a polyproline with two cysteine units, it took no more than a minute at 7 °C and pH 7.8. Subsequent disulfide scrambling is very slow and can therefore be prevented. Double electron-electron resonance and relaxation-induced dipolar modulation enhancement applied to the spin-labeled polyproline proved the spin label useful for distance determination in peptides.
Collapse
Affiliation(s)
- Daniel Ossadnik
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Sergei Kuzin
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093Zurich, Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| |
Collapse
|
5
|
Seal M, Feintuch A, Goldfarb D. The effect of spin-lattice relaxation on DEER background decay. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107327. [PMID: 36410061 DOI: 10.1016/j.jmr.2022.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The common approach to background removal in double electron-electron resonance (DEER) measurements on frozen solutions with a three-dimensional homogeneous distribution of doubly labeled biomolecules is to fit the background to an exponential decay function. Excluded volume effects or distribution in a dimension lower than three, such as proteins in a membrane, can lead to a stretched exponential decay. In this work, we show that in cases of spin labels with short spin-lattice relaxation time, up to an order of magnitude longer than the DEER trace length, relevant for metal-based spin labels, spin flips that take place during the DEER evolution time affect the background decay shape. This was demonstrated using a series of temperature-dependent DEER measurements on frozen solutions of a nitroxide radical, a Gd(III) complex, Cu(II) ions, and a bis-Gd(III) model complex. As expected, the background decay was exponential for the nitroxide, whereas deviations were noted for Gd(III) and Cu(II). Based on the theoretical approach of Keller et al. (Phys. Chem. Chem. Phys. 21 (2019) 8228-8245), which addresses the effect of spin-lattice relaxation-induced spin flips during the evolution time, we show that the background decay can be fitted to an exponent including a linear and quadratic term in t, which is the position of the pump pulse. Analysis of the data in terms of the probability of spontaneous spin flips induced by spin-lattice relaxation showed that this approach worked well for the high temperature range studied for Gd(III) and Cu(II). At the low temperature range, the spin flips that occured during the DEER evolution time for Gd(III) exceeded the measured spin-lattice relaxation rate and include contributions from spin flips due to another mechanisms, most likely nuclear spin diffusion.
Collapse
Affiliation(s)
- Manas Seal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
6
|
Scherer A, Yao X, Qi M, Wiedmaier M, Godt A, Drescher M. Increasing the Modulation Depth of Gd III-Based Pulsed Dipolar EPR Spectroscopy (PDS) with Porphyrin-Gd III Laser-Induced Magnetic Dipole Spectroscopy. J Phys Chem Lett 2022; 13:10958-10964. [PMID: 36399541 PMCID: PMC9720741 DOI: 10.1021/acs.jpclett.2c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Distance determination with pulsed EPR has become an important technique for the structural investigation of biomacromolecules, with double electron-electron resonance spectroscopy (DEER) as the most important method. GdIII-based spin labels are one of the most frequently used spin labels for DEER owing to their stability against reduction, high magnetic moment, and absence of orientation selection. A disadvantage of GdIII-GdIII DEER is the low modulation depth due to the broad EPR spectrum of GdIII. Here, we introduce laser-induced magnetic dipole spectroscopy (LaserIMD) with a spin pair consisting of GdIII(PymiMTA) and a photoexcited porphyrin as an alternative technique. We show that the excited state of the porphyrin is not disturbed by the presence of the GdIII complex and that herewith modulation depths of almost 40% are possible. This is significantly higher than the value of 7.2% that was achieved with GdIII-GdIII DEER.
Collapse
Affiliation(s)
- Andreas Scherer
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Xuemei Yao
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Max Wiedmaier
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Adelheid Godt
- Faculty
of Chemistry and Center of Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
7
|
Azarkh M, Keller K, Qi M, Godt A, Yulikov M. How accurately defined are the overtone coefficients in Gd(III)-Gd(III) RIDME? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 339:107217. [PMID: 35453095 DOI: 10.1016/j.jmr.2022.107217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR technique that is particularly suitable to determine distances between paramagnetic centers with a broad EPR spectrum, e.g. metal-ion-based ones. As far as high-spin systems (S > ½) are concerned, the RIDME experiment provides not only the basic dipolar frequency but also its overtones, which complicates the determination of interspin distances. Here, we present and discuss in a step-by-step fashion an r.m.s.d.-based approach for the calibration of the overtone coefficients for a series of molecular rulers doubly labeled with Gd(III)-PyMTA tags. The constructed 2D total-penalty diagrams help revealing that there is no unique set of overtone coefficients but rather a certain pool, which can be used to extract distance distributions between high-spin paramagnetic centers, as determined from the RIDME experiment. This is of particular importance for comparing RIDME overtone calibration and distance distributions obtained in different labs.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Katharina Keller
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
8
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
9
|
A Low-Spin CoII/Nitroxide Complex for Distance Measurements at Q-Band Frequencies. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulse dipolar electron paramagnetic resonance spectroscopy (PDS) is continuously furthering the understanding of chemical and biological assemblies through distance measurements in the nanometer range. New paramagnets and pulse sequences can provide structural insights not accessible through other techniques. In the pursuit of alternative spin centers for PDS, we synthesized a low-spin CoII complex bearing a nitroxide (NO) moiety, where both the CoII and NO have an electron spin S of 1/2. We measured CoII-NO distances with the well-established double electron–electron resonance (DEER aka PELDOR) experiment, as well as with the five- and six-pulse relaxation-induced dipolar modulation enhancement (RIDME) spectroscopies at Q-band frequencies (34 GHz). We first identified challenges related to the stability of the complex in solution via DEER and X-ray crystallography and showed that even in cases where complex disproportionation is unavoidable, CoII-NO PDS measurements are feasible and give good signal-to-noise (SNR) ratios. Specifically, DEER and five-pulse RIDME exhibited an SNR of ~100, and while the six-pulse RIDME exhibited compromised SNR, it helped us minimize unwanted signals from the RIDME traces. Last, we demonstrated RIDME at a 10 μM sample concentration. Our results demonstrate paramagnetic CoII to be a feasible spin center in medium magnetic fields with opportunities for PDS studies involving CoII ions.
Collapse
|
10
|
Zhang Q, Pavanello L, Potapov A, Bartlam M, Winkler GS. Structure of the human Ccr4-Not nuclease module using X-ray crystallography and electron paramagnetic resonance spectroscopy distance measurements. Protein Sci 2022; 31:758-764. [PMID: 34923703 PMCID: PMC8862426 DOI: 10.1002/pro.4262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/11/2022]
Abstract
Regulated degradation of mature, cytoplasmic mRNA is a key step in eukaryotic gene regulation. This process is typically initiated by the recruitment of deadenylase enzymes by cis-acting elements in the 3' untranslated region resulting in the shortening and removal of the 3' poly(A) tail of the target mRNA. The Ccr4-Not complex, a major eukaryotic deadenylase, contains two exoribonuclease subunits with selectivity toward poly(A): Caf1 and Ccr4. The Caf1 deadenylase subunit binds the MIF4G domain of the large subunit CNOT1 (Not1) that is the scaffold of the complex. The Ccr4 nuclease is connected to the complex via its leucine-rich repeat (LRR) domain, which binds Caf1, whereas the catalytic activity of Ccr4 is provided by its EEP domain. While the relative positions of the MIF4G domain of CNOT1, the Caf1 subunit, and the LRR domain of Ccr4 are clearly defined in current models, the position of the EEP nuclease domain of Ccr4 is ambiguous. Here, we use X-ray crystallography, the AlphaFold resource of predicted protein structures, and pulse electron paramagnetic resonance spectroscopy to determine and validate the position of the EEP nuclease domain of Ccr4 resulting in an improved model of the human Ccr4-Not nuclease module.
Collapse
Affiliation(s)
- Qionglin Zhang
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | - Lorenzo Pavanello
- School of PharmacyUniversity of NottinghamNottinghamUK,Present address:
LifeArcStevenage Bioscience Catalyst Open Innovation CampusStevenageUK
| | - Alexey Potapov
- School of Physics and Astronomy, Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Mark Bartlam
- Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
| | | |
Collapse
|
11
|
Fábregas-Ibáñez L, Tessmer MH, Jeschke G, Stoll S. Dipolar pathways in dipolar EPR spectroscopy. Phys Chem Chem Phys 2022; 24:2504-2520. [PMID: 35023519 PMCID: PMC8920025 DOI: 10.1039/d1cp03305k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dipolar electron paramagnetic resonance (EPR) experiments such as double electron-electron resonance (DEER) measure distributions of nanometer-scale distances between unpaired electrons, which provide valuable information for structural characterization of proteins and other macromolecular systems. To determine these distributions from the experimental signal, it is critical to employ an accurate model of the signal. For dilute samples of doubly spin-labeled molecules, the signal is a product of an intramolecular and an intermolecular contribution. We present a general model based on dipolar pathways valid for dipolar EPR experiments with spin-1/2 labels. Our results show that the intramolecular contribution consists of a sum and the intermolecular contribution consists of a product over individual dipolar pathway contributions. We examine several commonly used dipolar EPR experiments in terms of dipolar pathways and show experimental results confirming the theoretical predictions. This multi-pathway model makes it possible to analyze a wide range of dipolar EPR experiments within a single theoretical framework.
Collapse
Affiliation(s)
- Luis Fábregas-Ibáñez
- ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Maxx H Tessmer
- University of Washington, Department of Chemistry, Seattle, WA 98195, USA.
| | - Gunnar Jeschke
- ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefan Stoll
- University of Washington, Department of Chemistry, Seattle, WA 98195, USA.
| |
Collapse
|
12
|
Timofeev IO, Politanskaya LV, Tretyakov EV, Polienko YF, Tormyshev VM, Bagryanskaya E, Krumkacheva OA, Fedin MV. Fullerene-based triplet spin labels: methodology aspects for pulsed dipolar EPR spectroscopy. Phys Chem Chem Phys 2022; 24:4475-4484. [DOI: 10.1039/d1cp05545c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triplet states of photoexcited organic molecules are promising spin labels with advanced spectroscopic properties for Pulsed Dipolar Electron Paramagnetic Resonance (PD EPR) spectroscopy. Recently proposed triplet fullerene labels have shown...
Collapse
|
13
|
Russell H, Stewart R, Prior C, Oganesyan VS, Gaule TG, Lovett JE. DEER and RIDME Measurements of the Nitroxide-Spin Labelled Copper-Bound Amine Oxidase Homodimer from Arthrobacter Globiformis. APPLIED MAGNETIC RESONANCE 2021; 52:995-1015. [PMID: 34720439 PMCID: PMC8550341 DOI: 10.1007/s00723-021-01321-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 06/13/2023]
Abstract
In the study of biological structures, pulse dipolar spectroscopy (PDS) is used to elucidate spin-spin distances at nanometre-scale by measuring dipole-dipole interactions between paramagnetic centres. The PDS methods of Double Electron Electron Resonance (DEER) and Relaxation Induced Dipolar Modulation Enhancement (RIDME) are employed, and their results compared, for the measurement of the dipolar coupling between nitroxide spin labels and copper-II (Cu(II)) paramagnetic centres within the copper amine oxidase from Arthrobacter globiformis (AGAO). The distance distribution results obtained indicate that two distinct distances can be measured, with the longer of these at c.a. 5 nm. Conditions for optimising the RIDME experiment such that it may outperform DEER for these long distances are discussed. Modelling methods are used to show that the distances obtained after data analysis are consistent with the structure of AGAO. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00723-021-01321-6.
Collapse
Affiliation(s)
- Hannah Russell
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, St Andrews, KY16 9SS UK
| | - Rachel Stewart
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, St Andrews, KY16 9SS UK
| | | | | | - Thembaninkosi G. Gaule
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Janet E. Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, St Andrews, KY16 9SS UK
| |
Collapse
|
14
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Šimėnas M, O'Sullivan J, Zollitsch CW, Kennedy O, Seif-Eddine M, Ritsch I, Hülsmann M, Qi M, Godt A, Roessler MM, Jeschke G, Morton JJL. A sensitivity leap for X-band EPR using a probehead with a cryogenic preamplifier. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 322:106876. [PMID: 33264732 DOI: 10.1016/j.jmr.2020.106876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Inspired by the considerable success of cryogenically cooled NMR cryoprobes, we present an upgraded X-band EPR probehead, equipped with a cryogenic low-noise preamplifier. Our setup suppresses source noise, can handle the high microwave powers typical in X-band pulsed EPR, and is compatible with the convenient resonator coupling and sample access found on commercially available spectrometers. Our approach allows standard pulsed and continuous-wave EPR experiments to be performed at X-band frequency with significantly increased sensitivity compared to the unmodified setup. The probehead demonstrates a voltage signal-to-noise ratio (SNR) enhancement by a factor close to 8× at a temperature of 6 K, and remains close to 2× at room temperature. By further suppressing room-temperature noise at the expense of reduced microwave power (and thus minimum π-pulse length), the factor of SNR improvement approaches 15 at 6 K, corresponding to an impressive 200-fold reduction in EPR measurement time. We reveal the full potential of this probehead by demonstrating such SNR improvements using a suite of typical hyperfine and dipolar spectroscopy experiments on exemplary samples.
Collapse
Affiliation(s)
- Mantas Šimėnas
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK.
| | - James O'Sullivan
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | | | - Oscar Kennedy
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK
| | - Maryam Seif-Eddine
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
| | - Irina Ritsch
- ETH Zürich, Department of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Miriam Hülsmann
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Maxie M Roessler
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
| | - Gunnar Jeschke
- ETH Zürich, Department of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - John J L Morton
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; Department of Electronic & Electrical Engineering, UCL, London WC1E 7JE, UK.
| |
Collapse
|
16
|
EL Mkami H, Hunter R, Cruickshank P, Taylor M, Lovett J, Feintuch A, Qi M, Godt A, Smith G. High-sensitivity Gd 3+-Gd 3+ EPR distance measurements that eliminate artefacts seen at short distances. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:301-313. [PMID: 37904818 PMCID: PMC10500690 DOI: 10.5194/mr-1-301-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/18/2020] [Indexed: 11/01/2023]
Abstract
Gadolinium complexes are attracting increasing attention as spin labels for EPR dipolar distance measurements in biomolecules and particularly for in-cell measurements. It has been shown that flip-flop transitions within the central transition of the high-spin Gd3 + ion can introduce artefacts in dipolar distance measurements, particularly when measuring distances less than 3 nm. Previous work has shown some reduction of these artefacts through increasing the frequency separation between the two frequencies required for the double electron-electron resonance (DEER) experiment. Here we use a high-power (1 kW), wideband, non-resonant system operating at 94 GHz to evaluate DEER measurement protocols using two stiff Gd(III) rulers, consisting of two b i s -Gd3 + -PyMTA complexes, with separations of 2.1 nm and 6.0 nm, respectively. We show that by avoiding the - 1 2 → 1 2 central transition completely, and placing both the pump and the observer pulses on either side of the central transition, we can now observe apparently artefact-free spectra and narrow distance distributions, even for a Gd-Gd distance of 2.1 nm. Importantly we still maintain excellent signal-to-noise ratio and relatively high modulation depths. These results have implications for in-cell EPR measurements at naturally occurring biomolecule concentrations.
Collapse
Affiliation(s)
- Hassane EL Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Paul A. S. Cruickshank
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Michael J. Taylor
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science,
Rehovot, Israel
| | - Mian Qi
- Faculty of Chemistry and Center of Molecular Materials (CM2),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
| | - Adelheid Godt
- Faculty of Chemistry and Center of Molecular Materials (CM2),
Bielefeld University, Universitätsstraße 25, 33615 Bielefeld,
Germany
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St
Andrews, KY16 9SS, UK
| |
Collapse
|
17
|
Fábregas Ibáñez L, Jeschke G, Stoll S. DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:209-224. [PMID: 34568875 PMCID: PMC8462493 DOI: 10.5194/mr-1-209-2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 05/09/2023]
Abstract
Dipolar EPR spectroscopy (DEER and other techniques) enables the structural characterization of macromolecular and biological systems by measurement of distance distributions between unpaired electrons on a nanometer scale. The inference of these distributions from the measured signals is challenging due to the ill-posed nature of the inverse problem. Existing analysis tools are scattered over several applications with specialized graphical user interfaces. This renders comparison, reproducibility, and method development difficult. To remedy this situation, we present DeerLab, an open-source software package for analyzing dipolar EPR data that is modular and implements a wide range of methods. We show that DeerLab can perform one-step analysis based on separable non-linear least squares, fit dipolar multi-pathway models to multi-pulse DEER data, run global analysis with non-parametric distributions, and use a bootstrapping approach to fully quantify the uncertainty in the analysis.
Collapse
Affiliation(s)
- Luis Fábregas Ibáñez
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Abdullin D, Schiemann O. Pulsed Dipolar EPR Spectroscopy and Metal Ions: Methodology and Biological Applications. Chempluschem 2020; 85:353-372. [DOI: 10.1002/cplu.201900705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/16/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical ChemistryUniversity of Bonn Wegelerstr. 12 53115 Bonn Germany
| |
Collapse
|
19
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
20
|
Abdullin D, Matsuoka H, Yulikov M, Fleck N, Klein C, Spicher S, Hagelueken G, Grimme S, Lützen A, Schiemann O. Pulsed EPR Dipolar Spectroscopy under the Breakdown of the High-Field Approximation: The High-Spin Iron(III) Case. Chemistry 2019; 25:8820-8828. [PMID: 31017706 DOI: 10.1002/chem.201900977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Pulsed EPR dipolar spectroscopy (PDS) offers several methods for measuring dipolar coupling and thus the distance between electron-spin centers. To date, PDS measurements to metal centers were limited to ions that adhere to the high-field approximation. Here, the PDS methodology is extended to cases where the high-field approximation breaks down on the example of the high-spin Fe3+ /nitroxide spin-pair. First, the theory developed by Maryasov et al. (Appl. Magn. Reson. 2006, 30, 683-702) was adapted to derive equations for the dipolar coupling constant, which revealed that the dipolar spectrum does not only depend on the length and orientation of the interspin distance vector with respect to the applied magnetic field but also on its orientation to the effective g-tensor of the Fe3+ ion. Then, it is shown on a model system and a heme protein that a PDS method called relaxation-induced dipolar modulation enhancement (RIDME) is well-suited to measuring such spectra and that the experimentally obtained dipolar spectra are in full agreement with the derived equations. Finally, a RIDME data analysis procedure was developed, which facilitates the determination of distance and angular distributions from the RIDME data. Thus, this study enables the application of PDS to for example, the highly relevant class of high-spin Fe3+ heme proteins.
Collapse
Affiliation(s)
- Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Current address: Graduate School of Science, Osaka City University, Osaka, Japan
| | - Maxim Yulikov
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nico Fleck
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Christoph Klein
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany.,Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Arne Lützen
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Azarkh M, Bieber A, Qi M, Fischer JW, Yulikov M, Godt A, Drescher M. Gd(III)-Gd(III) Relaxation-Induced Dipolar Modulation Enhancement for In-Cell Electron Paramagnetic Resonance Distance Determination. J Phys Chem Lett 2019; 10:1477-1481. [PMID: 30864799 PMCID: PMC6625747 DOI: 10.1021/acs.jpclett.9b00340] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/13/2019] [Indexed: 05/26/2023]
Abstract
In-cell distance determination by electron paramagnetic resonance (EPR) spectroscopy reveals essential structural information about biomacromolecules under native conditions. We demonstrate that the pulsed EPR technique RIDME (relaxation induced dipolar modulation enhancement) can be utilized for such distance determination. The performance of in-cell RIDME has been assessed at Q-band using stiff molecular rulers labeled with Gd(III)-PyMTA and microinjected into Xenopus laevis oocytes. The overtone coefficients are determined to be the same for protonated aqueous solutions and inside cells. As compared to in-cell DEER (double electron-electron resonance, also abbreviated as PELDOR), in-cell RIDME features approximately 5 times larger modulation depth and does not show artificial broadening in the distance distributions due to the effect of pseudosecular terms.
Collapse
Affiliation(s)
- Mykhailo Azarkh
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Anna Bieber
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Jörg W.
A. Fischer
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Maxim Yulikov
- Laboratory
of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Adelheid Godt
- Faculty
of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Malte Drescher
- Department
of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
22
|
Dal Farra MG, Richert S, Martin C, Larminie C, Gobbo M, Bergantino E, Timmel CR, Bowen AM, Di Valentin M. Light-Induced Pulsed EPR Dipolar Spectroscopy on a Paradigmatic Hemeprotein. Chemphyschem 2019; 20:931-935. [PMID: 30817078 PMCID: PMC6618045 DOI: 10.1002/cphc.201900139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Indexed: 01/12/2023]
Abstract
Light-induced pulsed EPR dipolar spectroscopic methods allow the determination of nanometer distances between paramagnetic sites. Here we employ orthogonal spin labels, a chromophore triplet state and a stable radical, to carry out distance measurements in singly nitroxide-labeled human neuroglobin. We demonstrate that Zn-substitution of neuroglobin, to populate the Zn(II) protoporphyrin IX triplet state, makes it possible to perform light-induced pulsed dipolar experiments on hemeproteins, extending the use of light-induced dipolar spectroscopy to this large class of metalloproteins. The versatility of the method is ensured by the employment of different techniques: relaxation-induced dipolar modulation enhancement (RIDME) is applied for the first time to the photoexcited triplet state. In addition, an alternative pulse scheme for laser-induced magnetic dipole (LaserIMD) spectroscopy, based on the refocused-echo detection sequence, is proposed for accurate zero-time determination and reliable distance analysis.
Collapse
Affiliation(s)
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
- current affiliation: Institute of Physical ChemistryUniversity of FreiburgAlbertstr. 2179104FreiburgGermany
| | - Caterina Martin
- Department of BiologyUniversity of Padovaviale G. Colombo 335121PadovaItaly
- current affiliation: Groningen Biomolecular Science and Biotechnology InstituteUniversity of Groningen9700 ABGroningenThe Netherlands
| | - Charles Larminie
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marina Gobbo
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | | | - Christiane R. Timmel
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alice M. Bowen
- Centre for Advanced Electron Spin Resonance (CAESR) Department of Chemistry, Inorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Marilena Di Valentin
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
23
|
Shah A, Roux A, Starck M, Mosely JA, Stevens M, Norman DG, Hunter RI, El Mkami H, Smith GM, Parker D, Lovett JE. A Gadolinium Spin Label with Both a Narrow Central Transition and Short Tether for Use in Double Electron Electron Resonance Distance Measurements. Inorg Chem 2019; 58:3015-3025. [DOI: 10.1021/acs.inorgchem.8b02892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anokhi Shah
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Amandine Roux
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Jackie A. Mosely
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Michael Stevens
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - David G. Norman
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Robert I. Hunter
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Hassane El Mkami
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - Graham M. Smith
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
| | - David Parker
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Janet E. Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K
- BSRC, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
24
|
Ritsch I, Hintz H, Jeschke G, Godt A, Yulikov M. Improving the accuracy of Cu(ii)–nitroxide RIDME in the presence of orientation correlation in water-soluble Cu(ii)–nitroxide rulers. Phys Chem Chem Phys 2019; 21:9810-9830. [DOI: 10.1039/c8cp06573j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Detailed analysis of artefacts in the Cu(ii)–nitroxide RIDME experiments, related to orientation averaging, echo-crossing, ESEEM and background-correction is presented.
Collapse
Affiliation(s)
- Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Henrik Hintz
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Bioscience
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
25
|
Keller K, Qi M, Gmeiner C, Ritsch I, Godt A, Jeschke G, Savitsky A, Yulikov M. Intermolecular background decay in RIDME experiments. Phys Chem Chem Phys 2019; 21:8228-8245. [DOI: 10.1039/c8cp07815g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Theoretical and experimental studies of the RIDME background reveal electron and nuclear spectral diffusion contributions.
Collapse
Affiliation(s)
- Katharina Keller
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Christoph Gmeiner
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Irina Ritsch
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM2)
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - Gunnar Jeschke
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| | - Anton Savitsky
- Physics Department
- Technical University Dortmund
- Dortmund
- Germany
| | - Maxim Yulikov
- Laboratory of Physical Chemistry
- Department of Chemistry and Applied Biosciences
- ETH Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
26
|
Yang Y, Yang F, Gong YJ, Bahrenberg T, Feintuch A, Su XC, Goldfarb D. High Sensitivity In-Cell EPR Distance Measurements on Proteins using an Optimized Gd(III) Spin Label. J Phys Chem Lett 2018; 9:6119-6123. [PMID: 30277780 DOI: 10.1021/acs.jpclett.8b02663] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Distance measurements by electron-electron double resonance (DEER) carried out on spin-labeled proteins delivered into cells provide new insights into the conformational states of proteins in their native environment. Such measurements depend on spin labels that exhibit high redox stability and high DEER sensitivity. Here we present a new Gd(III)-based spin label, BrPSPy-DO3A-Gd(III), which was derived from an earlier label, BrPSPy-DO3MA-Gd(III), by removing the methyl group from the methyl acetate pending arms. The small chemical modification led to a reduction in the zero-field splitting and to a significant increase in the phase memory time, which together culminated in a remarkable improvement of in-cell DEER sensitivity, while maintaining the high distance resolution. The excellent performance of BrPSPy-DO3A-Gd(III) in in-cell DEER measurements was demonstrated on doubly labeled ubiquitin and GB1 delivered into HeLa cells by electroporation.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Feng Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300071 , China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
27
|
Worswick SG, Spencer JA, Jeschke G, Kuprov I. Deep neural network processing of DEER data. SCIENCE ADVANCES 2018; 4:eaat5218. [PMID: 30151430 PMCID: PMC6108566 DOI: 10.1126/sciadv.aat5218] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The established model-free methods for the processing of two-electron dipolar spectroscopy data [DEER (double electron-electron resonance), PELDOR (pulsed electron double resonance), DQ-EPR (double-quantum electron paramagnetic resonance), RIDME (relaxation-induced dipolar modulation enhancement), etc.] use regularized fitting. In this communication, we describe an attempt to process DEER data using artificial neural networks trained on large databases of simulated data. Accuracy and reliability of neural network outputs from real experimental data were found to be unexpectedly high. The networks are also able to reject exchange interactions and to return a measure of uncertainty in the resulting distance distributions. This paper describes the design of the training databases, discusses the training process, and rationalizes the observed performance. Neural networks produced in this work are incorporated as options into Spinach and DeerAnalysis packages.
Collapse
Affiliation(s)
- Steven G. Worswick
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - James A. Spencer
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology in Zurich, Vladimir Prelog Weg 2, CH-8093 Zürich, Switzerland
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
28
|
Clayton JA, Keller K, Qi M, Wegner J, Koch V, Hintz H, Godt A, Han S, Jeschke G, Sherwin MS, Yulikov M. Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Phys Chem Chem Phys 2018; 20:10470-10492. [PMID: 29617015 DOI: 10.1039/c7cp08507a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The magnetic properties of paramagnetic species with spin S > 1/2 are parameterized by the familiar g tensor as well as "zero-field splitting" (ZFS) terms that break the degeneracy between spin states even in the absence of a magnetic field. In this work, we determine the mean values and distributions of the ZFS parameters D and E for six Gd(iii) complexes (S = 7/2) and critically discuss the accuracy of such determination. EPR spectra of the Gd(iii) complexes were recorded in glassy frozen solutions at 10 K or below at Q-band (∼34 GHz), W-band (∼94 GHz) and G-band (240 GHz) frequencies, and simulated with two widely used models for the form of the distributions of the ZFS parameters D and E. We find that the form of the distribution of the ZFS parameter D is bimodal, consisting roughly of two Gaussians centered at D and -D with unequal amplitudes. The extracted values of D (σD) for the six complexes are, in MHz: Gd-NO3Pic, 485 ± 20 (155 ± 37); Gd-DOTA/Gd-maleimide-DOTA, -714 ± 43 (328 ± 99); iodo-(Gd-PyMTA)/MOMethynyl-(Gd-PyMTA), 1213 ± 60 (418 ± 141); Gd-TAHA, 1361 ± 69 (457 ± 178); iodo-Gd-PCTA-[12], 1861 ± 135 (467 ± 292); and Gd-PyDTTA, 1830 ± 105 (390 ± 242). The sign of D was adjusted based on the Gaussian component with larger amplitude. We relate the extracted P(D) distributions to the structure of the individual Gd(iii) complexes by fitting them to a model that superposes the contribution to the D tensor from each coordinating atom of the ligand. Using this model, we predict D, σD, and E values for several additional Gd(iii) complexes that were not measured in this work. The results of this paper may be useful as benchmarks for the verification of quantum chemical calculations of ZFS parameters, and point the way to designing Gd(iii) complexes for particular applications and estimating their magnetic properties a priori.
Collapse
Affiliation(s)
- Jessica A Clayton
- University of California, Santa Barbara, Department of Physics, Santa Barbara, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
New limits of sensitivity of site-directed spin labeling electron paramagnetic resonance for membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:841-853. [DOI: 10.1016/j.bbamem.2017.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/27/2017] [Accepted: 12/09/2017] [Indexed: 01/27/2023]
|
30
|
Gmeiner C, Dorn G, Allain FHT, Jeschke G, Yulikov M. Spin labelling for integrative structure modelling: a case study of the polypyrimidine-tract binding protein 1 domains in complexes with short RNAs. Phys Chem Chem Phys 2018; 19:28360-28380. [PMID: 29034946 DOI: 10.1039/c7cp05822e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A combined method, employing NMR and EPR spectroscopies, has demonstrated its strength in solving structures of protein/RNA and other types of biomolecular complexes. This method works particularly well when the large biomolecular complex consists of a limited number of rigid building blocks, such as RNA-binding protein domains (RBDs). A variety of spin labels is available for such studies, allowing for conventional as well as spectroscopically orthogonal double electron-electron resonance (DEER) measurements in EPR. In this work, we compare different types of nitroxide-based and Gd(iii)-based spin labels attached to isolated RBDs of the polypyrimidine-tract binding protein 1 (PTBP1) and to short RNA fragments. In particular, we demonstrate experiments on spectroscopically orthogonal labelled RBD/RNA complexes. For all experiments we analyse spin labelling, DEER method performance, resulting distance distributions, and their consistency with the predictions from the spin label rotamers analysis. This work provides a set of intra-domain calibration DEER data, which can serve as a basis to start structure determination of the full length PTBP1 complex with an RNA derived from encephalomycarditis virus (EMCV) internal ribosomal entry site (IRES). For a series of tested labelling sites, we discuss their particular advantages and drawbacks in such a structure determination approach.
Collapse
Affiliation(s)
- Christoph Gmeiner
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, 8093, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Katrin Ackermann
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance and EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, Scotland
| | - Bela E. Bode
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance and EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, Scotland
| |
Collapse
|
32
|
Giannoulis A, Motion CL, Oranges M, Bühl M, Smith GM, Bode BE. Orientation selection in high-field RIDME and PELDOR experiments involving low-spin CoII ions. Phys Chem Chem Phys 2018; 20:2151-2154. [DOI: 10.1039/c7cp07248a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orientation selective pulse dipolar electron paramagnetic resonance unravels relative geometries of spin centres from RIDME and PELDOR data.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
- Biomedical Sciences Research Complex, University of St Andrews
- UK
| | | | - Maria Oranges
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
- Biomedical Sciences Research Complex, University of St Andrews
- UK
| | - Michael Bühl
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
| | - Graham M. Smith
- SUPA, School of Physics & Astronomy, University of St Andrews
- UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
- Biomedical Sciences Research Complex, University of St Andrews
- UK
| |
Collapse
|