1
|
Jiang Y, Li S, Wang S, Zhang Y, Long C, Xie J, Fan X, Zhao W, Xu P, Fan Y, Cui C, Tang Z. Enabling Specific Photocatalytic Methane Oxidation by Controlling Free Radical Type. J Am Chem Soc 2023; 145:2698-2707. [PMID: 36649534 DOI: 10.1021/jacs.2c13313] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective CH4 oxidation to CH3OH or HCHO with O2 in H2O under mild conditions provides a desired sustainable pathway for synthesis of commodity chemicals. However, manipulating reaction selectivity while maintaining high productivity remains a huge challenge due to the difficulty in the kinetic control of the formation of a desired oxygenate against its overoxidation. Here, we propose a highly efficient strategy, based on the precise control of the type of as-formed radicals by rational design on photocatalysts, to achieve both high selectivity and high productivity of CH3OH and HCHO in CH4 photooxidation for the first time. Through tuning the band structure and the size of active sites (i.e., single atoms or nanoparticles) in our Au/In2O3 catalyst, we show alternative formation of two important radicals, •OOH and •OH, which leads to distinctly different reaction paths to the formation of CH3OH and HCHO, respectively. This approach gives rise to a remarkable HCHO selectivity and yield of 97.62% and 6.09 mmol g-1 on In2O3-supported Au single atoms (Au1/In2O3) and an exceptional CH3OH selectivity and yield of 89.42% and 5.95 mmol g-1 on In2O3-supported Au nanoparticles (AuNPs/In2O3), respectively, upon photocatalytic CH4 oxidation for 3 h at room temperature. This work opens a new avenue toward efficient and selective CH4 oxidation by delicate design of composite photocatalysts.
Collapse
Affiliation(s)
- Yuheng Jiang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,Center for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Siyang Li
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Shikun Wang
- University of Chinese Academy of Sciences, Beijing100049, P. R. China.,State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yin Zhang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Chang Long
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Jun Xie
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiaoyu Fan
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Wenshi Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Peng Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Yingying Fan
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, School of Civil Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou510006, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu610054, P. R. China
| | - Zhiyong Tang
- Chinese Academy of Science (CAS) Key Laboratory of Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China.,University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
2
|
Zhang Y, Liu Y, Zhao M, Sun Y, Liu S. The influence of (H 2O) 1-2 in the HOBr + HO 2 gas-phase reaction. RSC Adv 2022; 12:36028-36037. [PMID: 36545071 PMCID: PMC9753969 DOI: 10.1039/d2ra06204f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
The HOBr + HO2 reaction in the absence of water has three different channels for the abstraction of H to generate the corresponding products. The dominant channel is the generation of BrO + H2O2. The introduction of water molecules influences this dominant reaction via the way the reactants interact with the water molecules. The addition of water molecules decreases the energy barrier and increases the rate coefficient of the reaction. Interestingly, water works as a catalyst and we obtain BrO + H2O2, like in the reaction without water, or the water works as a reactant and we obtain products other than BrO + H2O2. The rate coefficients of the HOBr + HO2 reaction in the presence of water are calculated to be faster than the reaction in the absence of water. However, other pathways in the presence of water are slower than the reaction in the absence of water. The water-assisted effective rate coefficients for the HOBr + HO2 reaction are also larger than those for the reaction in the absence of water. The influence of a water dimer is not as important when compared with one water molecule. In summary, a single water molecule has a positive catalytic influence in enhancing the HOBr + HO2 reaction.
Collapse
Affiliation(s)
- Yunju Zhang
- Key Laboratory of Photoinduced Functional Materials, Mianyang Normal UniversityMianyang 621000PR China+86 816 2200819+86 816 2200064,Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU)Beijing 100048PR China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU)Beijing 100048PR China
| | - Meilian Zhao
- College of Medical Technology, Chengdu University of Traditional Chinese MedicineLiutai Avenue, Wenjiang DistrictChengduPR China
| | - Yuxi Sun
- Key Laboratory of Photoinduced Functional Materials, Mianyang Normal UniversityMianyang 621000PR China+86 816 2200819+86 816 2200064
| | - Shuxin Liu
- Key Laboratory of Photoinduced Functional Materials, Mianyang Normal UniversityMianyang 621000PR China+86 816 2200819+86 816 2200064
| |
Collapse
|
3
|
Zhang P, He B, Zhao M, Zhang Y. Role of monomolecular water and bimolecular water in IO + CH2O reaction. J Mol Model 2022; 28:308. [DOI: 10.1007/s00894-022-05295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
|
4
|
Nguyen TL, Perera A, Peeters J. High-accuracy first-principles-based rate coefficients for the reaction of OH and CH 3OOH. Phys Chem Chem Phys 2022; 24:26684-26691. [DOI: 10.1039/d2cp03919b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ˙OH-initiated oxidation of methyl hydroperoxide was theoretically characterized using high-accuracy composite amHEAT-345(Q) coupled-cluster calculations followed by a two-dimensional E,J resolved master equation analysis.
Collapse
Affiliation(s)
- Thanh Lam Nguyen
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Ajith Perera
- Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, FL, 32611, USA
| | - Jozef Peeters
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
5
|
Hao Y, Mao F, Zhao Y, Sun N, Wei W. Selective oxidation of CH 4 to valuable HCHO over a defective rTiO 2/GO metal-free photocatalyst. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A specially designed metal-free rTiO2/GO catalyst retarded the recombination of photo-generated electrons and holes and improved photocatalytic CH4 conversion performance.
Collapse
Affiliation(s)
- Yingdong Hao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Mao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yonghui Zhao
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Nannan Sun
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wei Wei
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Zhang T, Bi X, Wen M, Liu S, Chai G, Zeng Z, Wang R, Wang W, Long B. The HO 4H → O 3 + H 2O reaction catalysed by acidic, neutral and basic catalysts in the troposphere. Mol Phys 2020. [DOI: 10.1080/00268976.2019.1673912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tianlei Zhang
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People’s Republic of China
| | - Xiujuan Bi
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Mingjie Wen
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, People’s Republic of China
| | - Shuai Liu
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Guang Chai
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Zhaopeng Zeng
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Rui Wang
- School of Chemical & Environment Science, Shaanxi Key Laboratory of Catalysis, Institute of Theoretical and Computational Chemistry, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Wenliang Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, People’s Republic of China
| |
Collapse
|
7
|
Song H, Meng X, Wang S, Zhou W, Wang X, Kako T, Ye J. Direct and Selective Photocatalytic Oxidation of CH 4 to Oxygenates with O 2 on Cocatalysts/ZnO at Room Temperature in Water. J Am Chem Soc 2019; 141:20507-20515. [PMID: 31834789 DOI: 10.1021/jacs.9b11440] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Direct conversion of methane into methanol and other liquid oxygenates still confronts considerable challenges in activating the first C-H bond of methane and inhibiting overoxidation. Here, we report that ZnO loaded with appropriate cocatalysts (Pt, Pd, Au, or Ag) enables direct oxidation of methane to methanol and formaldehyde in water using only molecular oxygen as the oxidant under mild light irradiation at room temperature. Up to 250 micromoles of liquid oxygenates with ∼95% selectivity is achieved for 2 h over 10 mg of ZnO loaded with 0.1 wt % of Au. Experiments with isotopically labeled oxygen and water reveal that molecular O2, rather than water, is the source of oxygen for direct CH4 oxidation. We find that ZnO and cocatalyst could concertedly activate CH4 and O2 into methyl radical and mildly oxidative intermediate (hydroperoxyl radical) in water, which are two key precursor intermediates for generating oxygenated liquid products in direct CH4 oxidation. Our study underlines two equally significant aspects for realizing direct and selective photooxidation of CH4 to liquid oxygenates, i.e., efficient C-H bond activation of CH4 and controllable activation of O2.
Collapse
Affiliation(s)
- Hui Song
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan.,Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0814 , Japan
| | - Xianguang Meng
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan.,Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering , North China University of Science and Technology , Tangshan 063210 , P. R. China
| | - Shengyao Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Wei Zhou
- Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology Faculty of Science , Tianjin University , Tianjin 300072 , P. R. China
| | - Xusheng Wang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Tetsuya Kako
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan.,Graduate School of Chemical Sciences and Engineering , Hokkaido University , Sapporo 060-0814 , Japan.,TJU-NIMS International Collaboration Laboratory, School of Material Science and Engineering , Tianjin University , Tianjin 300072 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P. R. China
| |
Collapse
|
8
|
Zhang T, Wen M, Zhang Y, Lan X, Long B, Wang R, Yu X, Zhao C, Wang W. Atmospheric chemistry of the self-reaction of HO 2 radicals: stepwise mechanism versus one-step process in the presence of (H 2O) n (n = 1-3) clusters. Phys Chem Chem Phys 2019; 21:24042-24053. [PMID: 31646308 DOI: 10.1039/c9cp03530c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of water on radical-radical reactions are of great importance for the elucidation of the atmospheric oxidation process of free radicals. In the present work, the HO2 + HO2 reactions with (H2O)n (n = 1-3) have been investigated using quantum chemical methods and canonical variational transition state theory with small curvature tunneling. We have explored both one-step and stepwise mechanisms, in particular the stepwise mechanism initiated by ring enlargement. The calculated results have revealed that the stepwise mechanism is the dominant one in the HO2 + HO2 reaction that is catalyzed by one water molecule. This is because its pseudo-first-order rate constant (kRWM1') is 3 orders of magnitude larger than that of the corresponding one-step mechanism. Additionally, the value of kRWM1' at 298 K has been found to be 4.3 times larger than that of the rate constant of the HO2 + HO2 reaction (kR1) without catalysts, which is in good agreement with the experimental findings. The calculated results also showed that the stepwise mechanism is still dominant in the (H2O)2 catalyzed reaction due to its higher pseudo-first-order rate constant, which is 3 orders of magnitude larger than that of the corresponding one-step mechanism. On the other hand, the one-step process is much faster than the stepwise mechanism by a factor of 105-106 in the (H2O)3 catalyzed reaction. However, the pseudo-first-order rate constants for the (H2O)2 and (H2O)3-catalyzed reactions are lower than that of the H2O-catalyzed reaction by 3-4 orders of magnitude, which indicates that the water monomer is the most efficient one among all the catalysts of (H2O)n (n = 1-3). The present results have provided a definitive example that water and water clusters have important influences on atmospheric reactions.
Collapse
Affiliation(s)
- Tianlei Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tsona NT, Tang S, Du L. Impact of water on the BrO + HO 2 gas-phase reaction: mechanism, kinetics and products. Phys Chem Chem Phys 2019; 21:20296-20307. [PMID: 31495844 DOI: 10.1039/c9cp03612a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The BrO + HO2 reaction, which participates in the cycle of ozone removal via BrOH formation, was explored both in the absence and in the presence of water using ab initio calculations. Two main sets of products, (i) HBr + O3 and (ii) BrOH + O2, are formed regardless of the presence of water, following a hydrogen abstraction mechanism. The HBr + O3 products are formed from the intermediate BrOOOH adduct, whereas BrOH + O2 are formed either from the intermediate OBrOOH adduct or via a barrierless hydrogen transfer from HO2 to BrO. Owing to the formation of molecular oxygen that can bear different spin configurations, the formation of BrOH + O2 products was examined both on the singlet and the triplet surfaces. Under relevant atmospheric temperatures and pressure, the formation of products (i) is energetically and kinetically less favorable than that of products (ii). The rate coefficient at 298 K for the HBr + O3 formation was determined to be 2.00 × 10-20 cm3 molecule-1 s-1, and found to decrease by 1-2 orders of magnitude when one or both reactants are clustered with water. For the formation of BrOH + O2, a rate coefficient of 2.21 × 10-11 cm3 molecule-1 s-1 is determined on both singlet and triplet surfaces in the absence of water. Though this rate coefficient slightly decreases for the hydrated reactions, the fractions of the reactants that are effectively complexed with water are not high enough to shift the overall BrOH + O2 formation rate. The current study further indicates that humidity plays a negligible role in ozone removal via the BrO + HO2 reaction.
Collapse
Affiliation(s)
- Narcisse T Tsona
- School of Life Science, Shandong University, Binhai Road 72, Qingdao 266237, China
| | | | | |
Collapse
|
10
|
Welch BK, Dawes R, Bross DH, Ruscic B. An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families. J Phys Chem A 2019; 123:5673-5682. [DOI: 10.1021/acs.jpca.9b04381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bradley K. Welch
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - David H. Bross
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Branko Ruscic
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Xu L, Tsona NT, Tang S, Li J, Du L. Role of (H 2O) n ( n = 1-2) in the Gas-Phase Reaction of Ethanol with Hydroxyl Radical: Mechanism, Kinetics, and Products. ACS OMEGA 2019; 4:5805-5817. [PMID: 31459732 PMCID: PMC6648320 DOI: 10.1021/acsomega.9b00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/14/2019] [Indexed: 06/10/2023]
Abstract
The effect of water on the hydrogen abstraction mechanism and product branching ratio of CH3CH2OH + •OH reaction has been investigated at the CCSD(T)/aug-cc-pVTZ//BH&HLYP/aug-cc-pVTZ level of theory, coupled with the reaction kinetics calculations, implying the harmonic transition-state theory. Depending on the hydrogen sites in CH3CH2OH, the bared reaction proceeds through three elementary paths, producing CH2CH2OH, CH3CH2O, and CH3CHOH and releasing a water molecule. Thermodynamic and kinetic results indicate that the formation of CH3CHOH is favored over the temperature range of 216.7-425.0 K. With the inclusion of water, the reaction becomes quite complex, yielding five paths initiated by three channels. The products do not change compared with the bared reaction, but the preference for forming CH3CHOH drops by up to 2%. In the absence of water, the room temperature rate coefficients for the formation of CH2CH2OH, CH3CH2O, and CH3CHOH are computed to be 5.2 × 10-13, 8.6 × 10-14, and 9.0 × 10-11 cm3 molecule-1 s-1, respectively. The effective rate coefficients of corresponding monohydrated and dihydrated reactions are 3-5 and 6-8 orders of magnitude lower than those of the unhydrated reaction, indicating that water has a decelerating effect on the studied reaction. Overall, the characterized effects of water on the thermodynamics, kinetics, and products of the CH3CH2OH + •OH reaction will facilitate the understanding of the fate of ethanol and secondary pollutants derived from it.
Collapse
Affiliation(s)
- Li Xu
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Narcisse T. Tsona
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Shanshan Tang
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Junyao Li
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment
Research Institute and School of Life Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
12
|
Anglada JM, Solé A. Tropospheric oxidation of methyl hydrotrioxide (CH 3OOOH) by hydroxyl radical. Phys Chem Chem Phys 2018; 20:27406-27417. [PMID: 30357171 DOI: 10.1039/c8cp04486d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have employed high level theoretical methods to investigate the oxidation of methyl hydrotrioxide by hydroxyl radical, which is of interest in atmospheric chemistry research. The reaction can proceed by abstraction of either the terminal hydrogen atom of OOH group producing CH3O, O2 and H2O, or one hydrogen atom of the CH3 group forming H2CO, HO2 and H2O. The rate constants for both reactions at 298 K are computed to be 4.7 × 10-11 and 2.1 × 10-12 cm3 molecule-1 s-1, respectively, that is, the abstraction of terminal hydrogen atom of the OOH group is about 22 times faster than that of a hydrogen atom of the CH3 group. The rate constant for the overall CH3OOOH + OH reaction is computed to be 4.9 × 10-11 cm3 molecule-1 s-1. Our calculations predict branching ratios between 99.0 and 93.9% for the formation of methoxy radical plus molecular oxygen and water, and between 1.0 and 6.1% for the formation of formaldehyde plus hydroperoxyl radical and water, in the 225-325 K temperature range. The lifetime of CH3OOOH in the troposphere is predicted to range from of 1.8 hours at 225 K, up to 3.9 hours at 275 K and decreasing to 0.2 hours at 310 K. CH3OOO and CH2OOOH radicals have been also investigated.
Collapse
Affiliation(s)
- Josep M Anglada
- Departament de Química Biològica, (IQAC - CSIC), Jordi Girona, 18-26, E-08034 Barcelona, Spain.
| | | |
Collapse
|
13
|
Zhang TL, Lan XG, Wen MJ, Zhang YQ, Wang R, Wang ZY. Catalytic effect of water, water dimer, HCOOH and H2SO4 on the isomerisation of HON(O)NNO2 to ON(OH)NNO2: a mechanism study. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1518578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tian-lei Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Xin-guang Lan
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Ming-jie Wen
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Yong-qi Zhang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Rui Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| | - Zhi-yin Wang
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology, Hanzhong, People’s Republic of China
| |
Collapse
|
14
|
Li J, Tsona NT, Du L. The Role of (H₂O) 1-2 in the CH₂O + ClO Gas-Phase Reaction. Molecules 2018; 23:E2240. [PMID: 30177622 PMCID: PMC6225201 DOI: 10.3390/molecules23092240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Mechanism and kinetic studies have been carried out to investigate whether one and two water molecules could play a possible catalytic role on the CH₂O + ClO reaction. Density functional theory combined with the coupled cluster theory were employed to explore the potential energy surface and the thermodynamics of this radical-molecule reaction. The reaction proceeded through four different paths without water and eleven paths with water, producing H + HCO(O)Cl, Cl + HC(O)OH, HCOO + HCl, and HCO + HOCl. Results indicate that the formation of HCO + HOCl is predominant both in the water-free and water-involved cases. In the absence of water, all the reaction paths proceed through the formation of a transition state, while for some reactions in the presence of water, the products were directly formed via barrierless hydrogen transfer. The rate constant for the formation of HCO + HOCl without water is 2.6 × 10-16 cm³ molecule-1 s-1 at 298.15 K. This rate constant is decreased by 9-12 orders of magnitude in the presence of water. The current calculations hence demonstrate that the CH₂O + ClO reaction is impeded by water.
Collapse
Affiliation(s)
- Junyao Li
- Environment Research Institute, Shandong University, Binhai Road 72, Jinan 266237, China.
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Binhai Road 72, Jinan 266237, China.
| | - Lin Du
- Environment Research Institute, Shandong University, Binhai Road 72, Jinan 266237, China.
| |
Collapse
|
15
|
Wennberg PO, Bates KH, Crounse JD, Dodson LG, McVay RC, Mertens LA, Nguyen TB, Praske E, Schwantes RH, Smarte MD, St Clair JM, Teng AP, Zhang X, Seinfeld JH. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chem Rev 2018. [PMID: 29522327 DOI: 10.1021/acs.chemrev.7b00439] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Isoprene carries approximately half of the flux of non-methane volatile organic carbon emitted to the atmosphere by the biosphere. Accurate representation of its oxidation rate and products is essential for quantifying its influence on the abundance of the hydroxyl radical (OH), nitrogen oxide free radicals (NO x), ozone (O3), and, via the formation of highly oxygenated compounds, aerosol. We present a review of recent laboratory and theoretical studies of the oxidation pathways of isoprene initiated by addition of OH, O3, the nitrate radical (NO3), and the chlorine atom. From this review, a recommendation for a nearly complete gas-phase oxidation mechanism of isoprene and its major products is developed. The mechanism is compiled with the aims of providing an accurate representation of the flow of carbon while allowing quantification of the impact of isoprene emissions on HO x and NO x free radical concentrations and of the yields of products known to be involved in condensed-phase processes. Finally, a simplified (reduced) mechanism is developed for use in chemical transport models that retains the essential chemistry required to accurately simulate isoprene oxidation under conditions where it occurs in the atmosphere-above forested regions remote from large NO x emissions.
Collapse
|
16
|
Anglada JM, Crehuet R, Adhikari S, Francisco JS, Xia Y. Reactivity of hydropersulfides toward the hydroxyl radical unraveled: disulfide bond cleavage, hydrogen atom transfer, and proton-coupled electron transfer. Phys Chem Chem Phys 2018; 20:4793-4804. [PMID: 29383342 DOI: 10.1039/c7cp07570g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydropersulfides (RSSH) are highly reactive as nucleophiles and hydrogen atom transfer reagents. These chemical properties are believed to be key for them to act as antioxidants in cells. The reaction involving the radical species and the disulfide bond (S-S) in RSSH, a known redox-active group, however, has been scarcely studied, resulting in an incomplete understanding of the chemical nature of RSSH. We have performed a high-level theoretical investigation on the reactions of the hydroxyl radical (˙OH) toward a set of RSSH (R = -H, -CH3, -NH2, -C(O)OH, -CN, and -NO2). The results show that S-S cleavage and H-atom abstraction are the two competing channels. The electron inductive effect of R induces selective ˙OH substitution at one sulfur atom upon S-S cleavage, forming RSOH and ˙SH for the electron donating groups (EDGs), whereas producing HSOH and ˙SR for the electron withdrawing groups (EWGs). The H-Atom abstraction by ˙OH follows a classical hydrogen atom transfer (hat) mechanism, producing RSS˙ and H2O. Surprisingly, a proton-coupled electron transfer (pcet) process also occurs for R being an EDG. Although for RSSH having EWGs hat is the leading channel, S-S cleavage can be competitive or even dominant for the EDGs. The overall reactivity of RSSH toward ˙OH attack is greatly enhanced with the presence of an EDG, with CH3SSH being the most reactive species found in this study (overall rate constant: 4.55 × 1012 M-1 s-1). Our results highlight the complexity in RSSH reaction chemistry, the extent of which is closely modulated by the inductive effect of the substituents in the case of the oxidation by hydroxyl radicals.
Collapse
Affiliation(s)
- Josep M Anglada
- Institute of Advanced Chemistry of Catalonia IQAC-CSIC, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
17
|
Martins-Costa MTC, Anglada JM, Francisco JS, Ruiz-López MF. Impacts of cloud water droplets on the OH production rate from peroxide photolysis. Phys Chem Chem Phys 2018; 19:31621-31627. [PMID: 29164201 DOI: 10.1039/c7cp06813a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the difference between observed and modeled concentrations of HOx radicals in the troposphere is a current major issue in atmospheric chemistry. It is widely believed that existing atmospheric models miss a source of such radicals and several potential new sources have been proposed. In recent years, interest has increased on the role played by cloud droplets and organic aerosols. Computer modeling of ozone photolysis, for instance, has shown that atmospheric aqueous interfaces accelerate the associated OH production rate by as much as 3-4 orders of magnitude. Since methylhydroperoxide is a main source and sink of HOx radicals, especially at low NOx concentrations, it is fundamental to assess what is the influence of clouds on its chemistry and photochemistry. In this study, computer simulations for the photolysis of methylhydroperoxide at the air-water interface have been carried out showing that the OH production rate is severely enhanced, reaching a comparable level to ozone photolysis.
Collapse
Affiliation(s)
- M T C Martins-Costa
- SRSMC, University of Lorraine, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy, France.
| | | | | | | |
Collapse
|
18
|
Jara-Toro RA, Hernández FJ, Garavagno MDLA, Taccone RA, Pino GA. Water catalysis of the reaction between hydroxyl radicals and linear saturated alcohols (ethanol and n-propanol) at 294 K. Phys Chem Chem Phys 2018; 20:27885-27896. [DOI: 10.1039/c8cp05411h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water accelerates the title reaction by lowering the energy barrier and increasing the dipole moments of the reactants.
Collapse
Affiliation(s)
- Rafael A. Jara-Toro
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Federico J. Hernández
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - María de los A. Garavagno
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Raúl A. Taccone
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| | - Gustavo A. Pino
- INFIQC (CONICET – UNC) – Ciudad Universitaria
- X5000HUA Córdoba
- Argentina
- Dpto. de Fisicoquímica – Facultad de Ciencias Químicas – Universidad Nacional de Córdoba – Ciudad Universitaria
- X5000HUA Córdoba
| |
Collapse
|
19
|
Parandaman A, Tangtartharakul CB, Kumar M, Francisco JS, Sinha A. A Computational Study Investigating the Energetics and Kinetics of the HNCO + (CH3)2NH Reaction Catalyzed by a Single Water Molecule. J Phys Chem A 2017; 121:8465-8473. [DOI: 10.1021/acs.jpca.7b08657] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arathala Parandaman
- Department
of Chemistry and Biochemistry, University of California−San Diego, La Jolla, California 92093, United States
| | - Chanin B. Tangtartharakul
- Department
of Chemistry and Biochemistry, University of California−San Diego, La Jolla, California 92093, United States
| | - Manoj Kumar
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S. Francisco
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Amitabha Sinha
- Department
of Chemistry and Biochemistry, University of California−San Diego, La Jolla, California 92093, United States
| |
Collapse
|