1
|
Ribó JM, Hochberg D, Buhse T, Micheau JC. Viedma deracemization mechanisms in self-assembly processes. Phys Chem Chem Phys 2025; 27:2516-2527. [PMID: 39804208 DOI: 10.1039/d4cp03910f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Simulations on an ODE-based model shows that there are many common points between Viedma deracemization and chiral self-assemblies of achiral building blocks towards chiral nanoparticles. Both systems occur in a closed system with energy exchange but no matter exchange with the surroundings and show parallel reversible growth mechanisms which coexist with an irreversible cluster breaking (grinding). The various mechanisms of growth give rise to the formation of polymerization/depolymerization cycles while the consecutive transformation of achiral monomer into chiral cluster results into an indirect enantioselective autocatalysis. Deracemization occurs by the destabilization of the racemic non-equilibrium stationary state likely because of the excess of entropy production generated by the coupling of the reversible cluster growth mechanisms with grinding. Results show that the SMSB bias from the racemic composition occurs already at the oligomeric level of polymerization. Our model goes beyond the scope of the effect of grinding by the stirring of solutions which is thoroughly reported in supramolecular chirality. For instance, some unique characteristics, as those of a SMSB in closed systems, the simultaneous presence of different coupled reversible growth mechanisms, the activation by a depolymerization agent and the reincorporation of oligomers to the polymer growth reactions, could be adapted to replicator selectivity and to the emergence of biological homochirality scenarios.
Collapse
Affiliation(s)
- Josep M Ribó
- Department of Organic and Inorganic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona, E-08028 Barcelona, Catalonia, Spain.
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilómetro 4, E-28850 Torrejón de Ardoz, Madrid, Spain.
| | - Thomas Buhse
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, 62209 Cuernavaca, Morelos, Mexico.
| | - Jean-Claude Micheau
- Laboratoire Softmat, UMR au CNRS no 5623, Université Paul Sabatier, F-31062 Toulouse, France.
| |
Collapse
|
2
|
Ribó JM, Hochberg D. Physical Chemistry Models for Chemical Research in the XXth and XXIst Centuries. ACS PHYSICAL CHEMISTRY AU 2024; 4:122-134. [PMID: 38560750 PMCID: PMC10979499 DOI: 10.1021/acsphyschemau.3c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 04/04/2024]
Abstract
Thermodynamic hypotheses and models are the touchstone for chemical results, but the actual models based on time-invariance, which have performed efficiently in the development of chemistry, are nowadays invalid for the interpretation of the behavior of complex systems exhibiting nonlinear kinetics and with matter and energy exchange flows with the surroundings. Such fields of research will necessarily foment and drive the use of thermodynamic models based on the description of irreversibility at the macroscopic level, instead of the current models which are strongly anchored in microreversibility.
Collapse
Affiliation(s)
- Josep M. Ribó
- Department
of Inorganic and Organic Chemistry, University
of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute
of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - David Hochberg
- Department
of Molecular Evolution, Centro de Astrobiología
(CSIC-INTA), E-28850 Torrejón de Ardóz, Madrid, Spain
| |
Collapse
|
3
|
Diniz PC, Wattis JAD, da Costa FP. Mathematical Models of Chiral Symmetry-breaking – A Review of General Theories, and Adiabatic Approximations of the APED System. ORIGINS LIFE EVOL B 2022; 52:183-204. [DOI: 10.1007/s11084-022-09631-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022]
Abstract
AbstractWe review the literature surrounding chiral symmetry-breaking in chemical systems, with a focus on understanding the mathematical models underlying these chemical processes. We comment in particular on the toy model of Sandars, Viedma’s crystal grinding systems and the APED model. We include a few new results based on asymptotic analysis of the APED system.
Collapse
|
4
|
Ágreda Bastidas JA, Montoya Arguello JA, Mejía C. Biological homochirality and stoichiometric network analysis: Variations on Frank’s model. REVISTA COLOMBIANA DE QUÍMICA 2022. [DOI: 10.15446/rev.colomb.quim.v50n3.96921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Biological homochirality is modelled using chemical reaction mechanisms that include autocatalytic and inhibition reactions as well as input and output flows. From the mathematical point of view, the differential equations associated with those mechanisms have to exhibit bistability. The search for those bifurcations can be carried out using stoichiometric network analysis. This algorithm simplifies the mathematical analysis and can be implemented in a computer programme, which can help us to analyse chemical networks. However, regardless of the reduction to linear polynomials, which is made possible by this algorithm, in some cases, the complexity and length of the polynomials involved make the analysis unfeasible. This problem has been partially solved by extending the stoichiometric matrix with rows that code the duality relations between the different reactions occurring in the network given as input. All these facts allow us to analyse 28 different network models, highlighting the basic requirements needed by a chemical mechanism to have spontaneous mirror symmetry breaking.
Collapse
|
5
|
Buhse T, Micheau JC. Spontaneous Emergence of Transient Chirality in Closed, Reversible Frank-like Deterministic Models. ORIGINS LIFE EVOL B 2022; 52:3-20. [PMID: 35680768 DOI: 10.1007/s11084-022-09621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
To explore abiotic theories related to the origin of biomolecular homochirality, we analyze two entirely reversible kinetic models composed of an enantioselective autocatalysis with limited stereoselectivity that is coupled to an enantiomeric mutual inhibition (Frank-like models). The two models differ in their autocatalytic steps in respect to the formation of monomer species in one model and of dimer species in the other. While fully reversible and running in a closed system, spontaneous mirror symmetry breaking (SMSB) gives rise to transient chiral excursions, even when starting from a strictly achiral situation. Before the SMSB, the two models differ in the main dissipative processes. At the SMSB, the entropy production rate reaches its maximum in both models. Here it is the enantioselective autocatalysis with retention of the winner enantiomer that dominates. During the terminal phase, the enantioselective autocatalysis with inversion prevails, while the entropy production rate vanishes, thus fulfilling the conditions of microscopic reversibility. SMSB does not occur if the autocatalytic rate constant is too strong or too weak. However, when the autocatalysis is relatively weak, the temporary chiral excursions last for long periods of time and could be the starting point of a cascade of asymmetric reactions. The realism of such Frank-like models is discussed from the viewpoint of their relevance to prebiotic chemistry.
Collapse
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas - IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209, Cuernavaca, Morelos, Mexico.
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, Université Paul Sabatier, UMR au CNRS No. 5623, F-31062, Toulouse Cedex, France.
| |
Collapse
|
6
|
Bourdon-García RD, Ágreda J, Burgos-Salcedo J, Hochberg D, Ribó JM, Bargueño P, Estupiñan Salamanca A. Stoichiometric network analysis in reaction networks yielding spontaneous mirror symmetry breaking in a prebiotic atmosphere. Phys Chem Chem Phys 2022; 24:20788-20802. [PMID: 35667251 DOI: 10.1039/d2cp00538g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The generation of amino acid homochirality under prebiotic atmosphere conditions is a relevant issue in the study of the origin of life. This research is based on the production of amino acids via Strecker synthesis and how it is adjusted to the Kondepudi-Nelson autocatalytic model. The spontaneous mirror symmetry breaking (SMSB) of the new Kondepudi-Nelson-Strecker model, subject to two modifications (with Limited Enantioselective and Cross Inhibition), and also their combination were studied using the stoichiometric network analysis (SNA). In the calculations, the values obtained from the literature for alanine were considered. A total production of alanine of 7.56 × 109 mol year-1 was determined under prebiotic atmosphere conditions and starting from that value, the reaction rates for the models studied were estimated. Only the model with cross inhibition or achiral dimer formation is driven by stochastic fluctuations during SMSB. The stochastic fluctuation was estimated for a value of 2.619 × 10-15 mol L-1. This perturbation was sufficient to trigger SMSB. Finally, the results of SMSB were used to calculate the entropy production for the cross inhibition model.
Collapse
Affiliation(s)
- Rubén Danilo Bourdon-García
- Departamento de Química, Universidad Nacional de Colombia, Av. 30 45 - 03, 111321 Bogotá, DC, Colombia. .,Facultad de Ingeniería Civil, Fundación Universitaria Agraria de Colombia, Av. 170 54A - 10, 111166 Bogotá, DC, Colombia
| | - Jesús Ágreda
- Departamento de Química, Universidad Nacional de Colombia, Av. 30 45 - 03, 111321 Bogotá, DC, Colombia.
| | - Javier Burgos-Salcedo
- Dirección de Investigación, Fundación Universitaria San Mateo, Transv. 17 25 - 25, 111411 Bogotá, DC, Colombia
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir Kilometro 4, 28850 Torrejón de Ardoz, Madrid, Spain.
| | - Josep M Ribó
- Department of Organic Chemistry, Institute of Cosmos Science (IEEC-UB), University of Barcelona, Barcelona, Catalonia, Spain
| | - Pedro Bargueño
- Departamento de Física Aplicada, Universidad de Alicante, Campus de San Vicente del Raspeig, E-03690 Alicante, Spain.
| | | |
Collapse
|
7
|
Laurent G, Gaspard P, Lacoste D. A robust transition to homochirality in complex chemical reaction networks. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2021.0590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one such mechanism in Laurent
et al.
(Laurent, 2021
Proc. Natl Acad. Sci. USA
118
, e2012741118. (
doi:10.1073/pnas.2012741118
)) based on the properties of large out of equilibrium chemical networks. We showed that in such networks, a phase transition towards a homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. This paper aims at clarifying some important points in that scenario, not covered by our previous work. We first analyse the various conventions used to measure chirality, introduce the notion of chiral symmetry of a network and study its implications regarding the relative chiral signs adopted by different groups of molecules. We then propose a generalization of Frank’s model for large chemical networks, which we characterize completely using methods of random matrices. This analysis is extended to sparse networks, which shows that the emergence of homochirality is a robust transition.
Collapse
Affiliation(s)
- Gabin Laurent
- Gulliver, UMR CNRS 7083, ESPCI Paris PSL University, Paris 75231, France
| | - Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - David Lacoste
- Gulliver, UMR CNRS 7083, ESPCI Paris PSL University, Paris 75231, France
| |
Collapse
|
8
|
Symmetry of Post-Translational Modifications in a Human Enzyme. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Paraoxonase 2 (PON2) is a member of a small family of human lactonases. Recently, post-translational modifications (PTMs) of PON2 were highlighted, one of which involved the modulation of the enzyme activity. Furthermore, two important single nucleotide polymorphisms (SNPs) involved in type 2 diabetes and its consequences, were found to modulate the enzyme activity as well. The position on the PON2 structural model of both residues corresponding to SNPs and PTMs suggested a symmetry of the molecule. By sequence and structure superposition we were able to confirm this finding. The result will be discussed in light of the evolution of symmetry in biological molecules and their function.
Collapse
|
9
|
Maćešić S, Tóth Á, Horváth D. Origins of oscillatory dynamics in the model of reactive oxygen species in the rhizosphere. J Chem Phys 2021; 155:175102. [PMID: 34742207 DOI: 10.1063/5.0062139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oscillatory processes are essential for normal functioning and survival of biological systems, and reactive oxygen species have a prominent role in many of them. A mechanism representing the dynamics of these species in the rhizosphere is analyzed using stoichiometric network analysis with the aim to determine its capabilities to simulate various dynamical states, including oscillations. A detailed analysis has shown that unstable steady states result from four destabilizing feedback cycles, among which the cycle involving hydroquinone, an electron acceptor, and its semi-reduced form is the dominant one responsible for the existence of saddle-node and Andronov-Hopf bifurcations. This requires a higher steady-state concentration for the reduced electron acceptor compared to that of the remaining species, where the level of oxygen steady-state concentration determines whether the Andronov-Hopf or saddle-node bifurcation will occur.
Collapse
Affiliation(s)
- Stevan Maćešić
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, 6720 Szeged, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, 6720 Szeged, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, 6720 Szeged, Hungary
| |
Collapse
|
10
|
Ribó JM, Hochberg D. The Coordinate Reaction Model: An Obstacle to Interpreting the Emergence of Chemical Complexity. Chemistry 2021; 27:13098-13106. [PMID: 34259350 PMCID: PMC8518807 DOI: 10.1002/chem.202101562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/02/2022]
Abstract
The way chemical transformations are described by models based on microscopic reversibility does not take into account the irreversibility of natural processes, and therefore, in complex chemical networks working in open systems, misunderstandings may arise about the origin and causes of the stability of non-equilibrium stationary states, and general constraints on evolution in systems that are far from equilibrium. In order to be correctly simulated and understood, the chemical behavior of complex systems requires time-dependent models, otherwise the irreversibility of natural phenomena is overlooked. Micro reversible models based on the reaction-coordinate model are time invariant and are therefore unable to explain the evolution of open dissipative systems. The important points necessary for improving the modeling and simulations of complex chemical systems are: a) understanding the physical potential related to the entropy production rate, which is in general an inexact differential of a state function, and b) the interpretation and application of the so-called general evolution criterion (GEC), which is the general thermodynamic constraint for the evolution of dissipative chemical systems.
Collapse
Affiliation(s)
- Josep M. Ribó
- Department of Inorganic and Organic Chemistry Organic Chemistry Section Institute of Cosmos Science (IEEC-UB)University of Barcelonac. Martí i Franquès 108028Barcelona, CataloniaSpain
| | - David Hochberg
- Department of Molecular EvolutionCentro de Astrobiología (CSIC-INTA)Ctra. Ajalvir, Km. 428850, Torrejón de ArdozMadridSpain
| |
Collapse
|
11
|
Petsev ND, Stillinger FH, Debenedetti PG. Effect of configuration-dependent multi-body forces on interconversion kinetics of a chiral tetramer model. J Chem Phys 2021; 155:084105. [PMID: 34470355 DOI: 10.1063/5.0060266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a reformulation of the four-site molecular model for chiral phenomena introduced by Latinwo et al. ["Molecular model for chirality phenomena," J. Chem. Phys. 145, 154503 (2016)]. The reformulation includes an additional eight-body force that arises from an explicit configuration-dependent term in the potential energy function, resulting in a coarse-grained energy-conserving force field for molecular dynamics simulations of chirality phenomena. In this model, the coarse-grained interaction energy between two tetramers depends on their respective chiralities and is controlled by a parameter λ, where λ < 0 favors local configurations involving tetramers of opposite chirality and λ > 0 gives energetic preference to configurations involving tetramers of the same chirality. We compute the autocorrelation function for a quantitative chirality metric and demonstrate that the multi-body force modifies the interconversion kinetics such that λ ≠ 0 increases the effective barrier for enantiomer inversion. Our simulations reveal that for λ > 0 and temperatures below a sharply defined threshold value, this effect is dramatic, giving rise to spontaneous chiral symmetry breaking and locking molecules into their chiral identity.
Collapse
Affiliation(s)
- Nikolai D Petsev
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
12
|
Ramesh V, Krishnan J. Symmetry breaking meets multisite modification. eLife 2021; 10:65358. [PMID: 34018920 PMCID: PMC8439660 DOI: 10.7554/elife.65358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
Multisite modification is a basic way of conferring functionality to proteins and a key component of post-translational modification networks. Additional interest in multisite modification stems from its capability of acting as complex information processors. In this paper, we connect two seemingly disparate themes: symmetry and multisite modification. We examine different classes of random modification networks of substrates involving separate or common enzymes. We demonstrate that under different instances of symmetry of the modification network (invoked explicitly or implicitly and discussed in the literature), the biochemistry of multisite modification can lead to the symmetry being broken. This is shown computationally and consolidated analytically, revealing parameter regions where this can (and in fact does) happen, and characteristics of the symmetry-broken state. We discuss the relevance of these results in situations where exact symmetry is not present. Overall, through our study we show how symmetry breaking (i) can confer new capabilities to protein networks, including concentration robustness of different combinations of species (in conjunction with multiple steady states); (ii) could have been the basis for ordering of multisite modification, which is widely observed in cells; (iii) can significantly impact information processing in multisite modification and in cell signalling networks/pathways where multisite modification is present; and (iv) can be a fruitful new angle for engineering in synthetic biology and chemistry. All in all, the emerging conceptual synthesis provides a new vantage point for the elucidation and the engineering of molecular systems at the junction of chemical and biological systems. Proteins help our cells perform the chemical reactions necessary for life. Once proteins are made, they can also be modified in different ways. This can simply change their activity, or otherwise make them better suited for their specific jobs within the cell. Biological ‘catalysts’ called enzymes carry out protein modifications by reversibly adding (or removing) chemical groups, such as phosphate groups. ‘Multisite modifications’ occur when a protein has two or more modifications in different areas, which can be added randomly or in a specific sequence. The combination of all the modifications attached to a protein acts like a chemical barcode and confers a specific function to the protein. Modification networks add levels of complexity above individual proteins. These encompass not only the proteins in a cell or tissue, but also the different enzymes that can modify them, and how they all interact with each other. Although our knowledge of these networks is substantial, basic aspects, such as how the ordering of multisite modification systems emerges, is still not well understood. Using a simple set of multisite modifications, Ramesh and Krishnan set out to study the potential mechanisms allowing the creation of order in this context. Symmetry is a pervasive theme across the sciences. In biology, symmetry and how it may be broken, is important to understand, for example, how organism develop. Ramesh and Krishnan used the perspective of symmetry in protein networks to uncover the origins of ordering. First, mathematical models of simple modification networks were created based on their basic descriptions. This system centred on proteins that could have phosphate modifications at two possible sites. The network was ‘symmetric’, meaning that the rate of different sets of chemical reactions was identical, as were the amounts of all the enzymes involved. Dissecting the simulated network using a variety of mathematical approaches showed that its initial symmetry could break, giving rise to sets of ordered multisite modifications. Breaking symmetry did not require any additional features or factors; the basic chemical ‘ingredients’ of protein modification were all that was needed. The prism of symmetry also revealed other aspects of these multisite modification networks, such as robustness and oscillations. This study sheds new light on the mechanism behind ordering of protein modifications. In the future, Ramesh and Krishnan hope that this approach can be applied to the study of not just proteins but also a wider range of biochemical networks.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineerng, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Abstract
The selection of a single molecular handedness, or homochirality across all living matter, is a mystery in the origin of life. Frank's seminal model showed in the '50s how chiral symmetry breaking can occur in nonequilibrium chemical networks. However, an important shortcoming in this classic model is that it considers a small number of species, while there is no reason for the prebiotic system, in which homochirality first appeared, to have had such a simple composition. Furthermore, this model does not provide information on what could have been the size of the molecules involved in this homochiral prebiotic system. Here, we show that large molecular systems are likely to undergo a phase transition toward a homochiral state, as a consequence of the fact that they contain a large number of chiral species. Using chemoinformatics tools, we quantify how abundant chiral species are in the chemical universe of all possible molecules of a given length. Then, we propose that Frank's model should be extended to include a large number of species, in order to possess the transition toward homochirality, as confirmed by numerical simulations. Finally, using random matrix theory, we prove that large nonequilibrium reaction networks possess a generic and robust phase transition toward a homochiral state.
Collapse
|
14
|
Hochberg D, Ribó JM. Entropic analysis of bistability and the general evolution criterion. Phys Chem Chem Phys 2021; 23:14051-14063. [DOI: 10.1039/d1cp01236c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An open flow bistable Schlögl model in a well-stirred isothermal reaction volume V showing the balance of the entropy production and the exchange entropy on the non-equilibrium stationary states.
Collapse
Affiliation(s)
- David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiología (CSIC-INTA)
- 28850 Torrejón de Ardoz
- Spain
| | - Josep M. Ribó
- Department of Organic and Inorganic Chemistry
- Institute of Cosmos Science (IEEC-UB)
- University of Barcelona
- Barcelona
- Spain
| |
Collapse
|
15
|
Abstract
Chemistry as a natural science occupies the length and temporal scales ranging between the formation of atoms and molecules as quasi-classical objects, and the formation of proto-life systems showing catalytic synthesis, replication, and the capacity for Darwinian evolution. The role of chiral dissymmetry in the chemical evolution toward life is manifested in how the increase of chemical complexity, from atoms and molecules to complex open systems, accompanies the emergence of biological homochirality toward life. Chemistry should express chirality not only as molecular structural dissymmetry that at the present is described in chemical curricula by quite effective pedagogical arguments, but also as a cosmological phenomenon. This relates to a necessarily better understanding of the boundaries of chemistry with physics and biology.
Collapse
|
16
|
Ribó JM, Hochberg D. Spontaneous mirror symmetry breaking: an entropy production survey of the racemate instability and the emergence of stable scalemic stationary states. Phys Chem Chem Phys 2020; 22:14013-14025. [DOI: 10.1039/d0cp02280b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stability of non-equilibrium stationary states and spontaneous mirror symmetry breaking, provoked by the destabilization of the racemic thermodynamic branch, is studied for enantioselective autocatalysis in an open flow system, and for a continuous range n of autocatalytic orders.
Collapse
Affiliation(s)
- Josep M. Ribó
- Department of Organic Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
- Institute of Cosmos Science (IEEC-UB)
| | - David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiology (CSIC-INTA)
- E-28850 Torrejón de Ardoz
- Spain
| |
Collapse
|
17
|
Montoya A, Cruz E, Ágreda J. Computing the Parameter Values for the Emergence of Homochirality in Complex Networks. Life (Basel) 2019; 9:life9030074. [PMID: 31540188 PMCID: PMC6789494 DOI: 10.3390/life9030074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/29/2022] Open
Abstract
The goal of our research is the development of algorithmic tools for the analysis of chemical reaction networks proposed as models of biological homochirality. We focus on two algorithmic problems: detecting whether or not a chemical mechanism admits mirror symmetry-breaking; and, given one of those networks as input, sampling the set of racemic steady states that can produce mirror symmetry-breaking. Algorithmic solutions to those two problems will allow us to compute the parameter values for the emergence of homochirality. We found a mathematical criterion for the occurrence of mirror symmetry-breaking. This criterion allows us to compute semialgebraic definitions of the sets of racemic steady states that produce homochirality. Although those semialgebraic definitions can be processed algorithmically, the algorithmic analysis of them becomes unfeasible in most cases, given the nonlinear character of those definitions. We use Clarke’s system of convex coordinates to linearize, as much as possible, those semialgebraic definitions. As a result of this work, we get an efficient algorithm that solves both algorithmic problems for networks containing only one enantiomeric pair and a heuristic algorithm that can be used in the general case, with two or more enantiomeric pairs.
Collapse
Affiliation(s)
- Andrés Montoya
- Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia.
| | - Elkin Cruz
- Departamento de Química, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia.
| | - Jesús Ágreda
- Departamento de Química, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia.
| |
Collapse
|
18
|
The Limited Roles of Autocatalysis and Enantiomeric Cross-Inhibition in Achieving Homochirality in Dilute Systems. ORIGINS LIFE EVOL B 2019; 49:49-60. [DOI: 10.1007/s11084-019-09579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
19
|
Chemical Basis of Biological Homochirality during the Abiotic Evolution Stages on Earth. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Spontaneous mirror symmetry breaking (SMSB), a phenomenon leading to non-equilibrium stationary states (NESS) that exhibits biases away from the racemic composition is discussed here in the framework of dissipative reaction networks. Such networks may lead to a metastable racemic non-equilibrium stationary state that transforms into one of two degenerate but stable enantiomeric NESSs. In such a bifurcation scenario, the type of the reaction network, as well the boundary conditions, are similar to those characterizing the currently accepted stages of emergence of replicators and autocatalytic systems. Simple asymmetric inductions by physical chiral forces during previous stages of chemical evolution, for example in astrophysical scenarios, must involve unavoidable racemization processes during the time scales associated with the different stages of chemical evolution. However, residual enantiomeric excesses of such asymmetric inductions suffice to drive the SMSB stochastic distribution of chiral signs into a deterministic distribution. According to these features, we propose that a basic model of the chiral machinery of proto-life would emerge during the formation of proto-cell systems by the convergence of the former enantioselective scenarios.
Collapse
|
20
|
Entropic Analysis of Mirror Symmetry Breaking in Chiral Hypercycles. LIFE (BASEL, SWITZERLAND) 2019; 9:life9010028. [PMID: 30884765 PMCID: PMC6463124 DOI: 10.3390/life9010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/27/2023]
Abstract
Replicators are fundamental to the origin of life and evolvability. Biology exhibits homochirality: only one of two enantiomers is used in proteins and nucleic acids. Thermodynamic studies of chemical replicators able to lead to homochirality shed valuable light on the origin of homochirality and life in conformity with the underlying mechanisms and constraints. In line with this framework, enantioselective hypercyclic replicators may lead to spontaneous mirror symmetry breaking (SMSB) without the need for additional heterochiral inhibition reactions, which can be an obstacle for the emergence of evolutionary selection properties. We analyze the entropy production of a two-replicator system subject to homochiral cross-catalysis which can undergo SMSB in an open-flow reactor. The entropy exchange with the environment is provided by the input and output matter flows, and is essential for balancing the entropy production at the non-equilibrium stationary states. The partial entropy contributions, associated with the individual elementary flux modes, as defined by stoichiometric network analysis (SNA), describe how the system's internal currents evolve, maintaining the balance between entropy production and exchange, while minimizing the entropy production after the symmetry breaking transition. We validate the General Evolution Criterion, stating that the change in the chemical affinities proceeds in a way as to lower the value of the entropy production.
Collapse
|
21
|
Čupić Ž, Maćešić S, Novakovic K, Anić S, Kolar-Anić L. Stoichiometric network analysis of a reaction system with conservation constraints. CHAOS (WOODBURY, N.Y.) 2018; 28:083114. [PMID: 30180608 DOI: 10.1063/1.5026791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Stoichiometric Network Analysis (SNA) is a powerful method that can be used to examine instabilities in modelling a broad range of reaction systems without knowing the explicit values of reaction rate constants. Due to a lack of understanding, SNA is rarely used and its full potential is not yet fulfilled. Using the oscillatory carbonylation of a polymeric substrate [poly(ethylene glycol)methyl ether acetylene] as a case study, in this work, we consider two mathematical methods for the application of SNA to the reaction models when conservation constraints between species have an important role. The first method takes conservation constraints into account and uses only independent intermediate species, while the second method applies to the full set of intermediate species, without the separation of independent and dependent variables. Both methods are used for examination of steady state stability by means of a characteristic polynomial and related Jacobian matrix. It was shown that both methods give the same results. Therefore, as the second method is simpler, we suggest it as a more straightforward method for the applications.
Collapse
Affiliation(s)
- Željko Čupić
- Centre of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Stevan Maćešić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Slobodan Anić
- Centre of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Ljiljana Kolar-Anić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia
| |
Collapse
|
22
|
Hochberg D, Ribó JM. Stoichiometric network analysis of entropy production in chemical reactions. Phys Chem Chem Phys 2018; 20:23726-23739. [DOI: 10.1039/c8cp04398a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SNA extreme currents allow for the evaluation and understanding of entropy production of NESS in open system reaction networks.
Collapse
Affiliation(s)
- David Hochberg
- Department of Molecular Evolution
- Centro de Astrobiología (CSIC-INTA)
- 28850 Torrejón de Ardoz
- Spain
| | - Josep M. Ribó
- Department of Organic Chemistry
- Institute of Cosmos Science (IEEC-UB)
- University of Barcelona
- Barcelona
- Spain
| |
Collapse
|
23
|
Ribó JM, Hochberg D, Crusats J, El-Hachemi Z, Moyano A. Spontaneous mirror symmetry breaking and origin of biological homochirality. J R Soc Interface 2017; 14:20170699. [PMID: 29237824 PMCID: PMC5746574 DOI: 10.1098/rsif.2017.0699] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/22/2017] [Indexed: 11/12/2022] Open
Abstract
Recent reports on both theoretical simulations and on the physical chemistry basis of spontaneous mirror symmetry breaking (SMSB), that is, asymmetric synthesis in the absence of any chiral polarizations other than those arising from the chiral recognition between enantiomers, strongly suggest that the same nonlinear dynamics acting during the crucial stages of abiotic chemical evolution leading to the formation and selection of instructed polymers and replicators, would have led to the homochirality of instructed polymers. We review, in the first instance, which reaction networks lead to the nonlinear kinetics necessary for SMSB, and the thermodynamic features of the systems where this potentiality may be realized. This could aid not only in the understanding of SMSB, but also the design of reliable scenarios in abiotic evolution where biological homochirality could have taken place. Furthermore, when the emergence of biological chirality is assumed to occur during the stages of chemical evolution leading to the selection of polymeric species, one may hypothesize on a tandem track of the decrease of symmetry order towards biological homochirality, and the transition from the simple chemistry of astrophysical scenarios to the complexity of systems chemistry yielding Darwinian evolution.
Collapse
Affiliation(s)
- Josep M Ribó
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Joaquim Crusats
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Zoubir El-Hachemi
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
- Institute of Cosmos Science (IEEC-UB), c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Albert Moyano
- Department of Inorganic and Organic Chemistry, University of Barcelona, c. Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Strizhak P, Zhokh A, Trypolskyi A. Methanol conversion to olefins on H-ZSM-5/Al2O3 catalysts: kinetic modeling. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-017-1304-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|