1
|
Wang Y, Chen L, Lu J, Pan J, Zhang J. Surface Orthogonal Patterning and Bidirectional Self-Assembly of Nanoparticles Tethered by V-Shaped Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16595-16604. [PMID: 39066716 DOI: 10.1021/acs.langmuir.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We investigated the surface orthogonal patterning and bidirectional self-assembly of binary hairy nanoparticles (NPs) constructed by uniformly tethering a single NP with multiple V-shaped AB diblock copolymers using Brownian dynamics simulations in a poor solvent. At low concentration, the chain collapse and microphase separation of binary polymer brushes can lead to the patterning of the NP surface into A- and B-type orthogonal patches with various numbers of domains (valency), n = 1-6, that adopt spherical, linear, triangular, tetrahedral, square pyramidal, and pentagonal pyramidal configurations. There is a linear relationship between the valency and the average ratio of NP diameter to the polymers' unperturbed root-mean-square end-to-end distance for the corresponding valency. The linear slope depends on the grafting density and is independent of the interaction parameters between polymers. At high concentration, the orthogonal patch NPs serve as building blocks and exhibit directional attractions by overlapping the same type of domains, resulting in self-assembly into a series of fascinating architectures depending on the valency and polymer length. Notably, the 2-valent orthogonal patch NPs have the bidirectional bonding ability to form the two-dimensional (2D) square NP arrays by two distinct pathways. Simultaneously patching A and B blocks enables the one-step formation of 2D square arrays via bidirectional growth, whereas step-by-step patching causes the directional formation of 1D chains followed by 2D square arrays. Moreover, the gap between NPs in the 2D square arrays is related to the polymer length but independent of the NP diameter. These 2D square NP arrays are of significant value in practical applications such as integrated circuit manufacturing and nanotechnology.
Collapse
Affiliation(s)
- Yingying Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Liyuan Chen
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Jiafan Lu
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Junxing Pan
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Jinjun Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| |
Collapse
|
2
|
Krishnamurthy S, Mathews Kalapurakal RA, Mani E. Computer simulations of self-assembly of anisotropic colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:273001. [PMID: 35172296 DOI: 10.1088/1361-648x/ac55d6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Computer simulations have played a significant role in understanding the physics of colloidal self-assembly, interpreting experimental observations, and predicting novel mesoscopic and crystalline structures. Recent advances in computer simulations of colloidal self-assembly driven by anisotropic or orientation-dependent inter-particle interactions are highlighted in this review. These interactions are broadly classified into two classes: entropic and enthalpic interactions. They mainly arise due to shape anisotropy, surface heterogeneity, compositional heterogeneity, external field, interfaces, and confinements. Key challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Sriram Krishnamurthy
- Polymer Engineering and Colloids Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Remya Ann Mathews Kalapurakal
- Polymer Engineering and Colloids Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Ethayaraja Mani
- Polymer Engineering and Colloids Science Laboratory, Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
3
|
Wang J, Zhu B, Wang Y, Hao Y, Zhang J, Li Z. Polymer pattern-induced self-assembly of inorganic nanoparticles. SOFT MATTER 2021; 18:97-106. [PMID: 34870666 DOI: 10.1039/d1sm01388b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Functional assemblies of inorganic nanoparticles (NPs) are widely studied owing to their collective electromagnetic properties and various application from nanodrugs and bioimaging. In most cases, the superstructures of NPs are prepared with the assistance of templates or external fields. Therefore, how to prepare the functional assemblies of NPs more simply remains a challenge. Here, a free-template assembly strategy for preparing the superstructures of NPs is proposed in our work. In our strategy, we design poly(glycerol monomethacrylate)-b-poly(2-hydroxypropyl methacrylate) (PGMA-b-PHPMA) coated NPs. Then, using the polymerization-induced self-assembly (PISA), hydrophobic PHPMA blocks resulted in the phase separation to form the orderly patterns, which is expected to induced NPs to self-assemble into the orderly superstructures. By DPD simulations, we find that the disk, ring, composite superstructures can be obtained by regulating the graft density, verifying that our assembly strategy of NPs is feasible. Even more interesting is that NPs are also distributed in an orderly way on the surface of aggregations to form the orderly NP patterns. Besides that, the thermodynamics, dynamics, and structure details in the self-assembly process of HINPs are shown in our work, providing a new idea and elaborate physical picture for the following preparation of the superstructure of NPs.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Bojin Zhu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yining Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Yujian Hao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhen Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| |
Collapse
|
4
|
Bohannon CA, Chancellor AJ, Kelly MT, Le TT, Zhu L, Li CY, Zhao B. Adaptable Multivalent Hairy Inorganic Nanoparticles. J Am Chem Soc 2021; 143:16919-16924. [PMID: 34623815 DOI: 10.1021/jacs.1c08261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report a polymer brush-based approach for fabricating multivalent patchy nanoparticles (NPs) with the number of nanodomains (valency) from 6 to 10, potentially from 1 to 10, by exploiting the lateral microphase separation of binary mixed homopolymer brushes grafted on NPs with a radius comparable to the polymer sizes. Well-defined mixed brushes were grown on 20.4 nm silica NPs by two-step surface-initiated reversible deactivation radical polymerizations and microphase separated laterally upon casting from a good solvent, producing multivalent NPs on 2D surfaces. A linear relationship between valency and average core size for the corresponding valency was observed. The mixed brush NPs exhibited abilities to form "bonds" through the overlap of nanodomains and to change the valency when interacting with adjacent NPs. This method could open up a new avenue for studying patchy NPs.
Collapse
Affiliation(s)
- Caleb A Bohannon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew J Chancellor
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Michael T Kelly
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tram T Le
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lei Zhu
- Department of Macromolecular Science and Engineering and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Christopher Y Li
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Bačová P, Mintis DG, Gkolfi E, Harmandaris V. Mikto-Arm Stars as Soft-Patchy Particles: From Building Blocks to Mesoscopic Structures. Polymers (Basel) 2021; 13:1114. [PMID: 33915849 PMCID: PMC8037958 DOI: 10.3390/polym13071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/22/2022] Open
Abstract
We present an atomistic molecular dynamics study of self-assembled mikto-arm stars, which resemble patchy-like particles. By increasing the number of stars in the system, we propose a systematic way of examining the mutual orientation of these fully penetrable patchy-like objects. The individual stars maintain their patchy-like morphology when creating a mesoscopic (macromolecular) self-assembled object of more than three stars. The self-assembly of mikto-arm stars does not lead to a deformation of the stars, and their shape remains spherical. We identified characteristic sub-units in the self-assembled structure, differing by the mutual orientation of the nearest neighbor stars. The current work aims to elucidate the possible arrangements of the realistic, fully penetrable patchy particles in polymer matrix and to serve as a model system for further studies of nanostructured materials or all-polymer nanocomposites using the mikto-arm stars as building blocks.
Collapse
Affiliation(s)
- Petra Bačová
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Str., Nicosia 2121, Cyprus; (D.G.M.); (V.H.)
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece;
| | - Dimitris G. Mintis
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Str., Nicosia 2121, Cyprus; (D.G.M.); (V.H.)
| | - Eirini Gkolfi
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece;
- Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Computation-Based Science and Technology Research Center, The Cyprus Institute, 20 Constantinou Kavafi Str., Nicosia 2121, Cyprus; (D.G.M.); (V.H.)
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece;
- Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 Heraklion, Crete, Greece
| |
Collapse
|
6
|
Lu Y, Lin J, Wang L, Zhang L, Cai C. Self-Assembly of Copolymer Micelles: Higher-Level Assembly for Constructing Hierarchical Structure. Chem Rev 2020; 120:4111-4140. [DOI: 10.1021/acs.chemrev.9b00774] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Yi C, Yang Y, Liu B, He J, Nie Z. Polymer-guided assembly of inorganic nanoparticles. Chem Soc Rev 2019; 49:465-508. [PMID: 31845685 DOI: 10.1039/c9cs00725c] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The self-assembly of inorganic nanoparticles is of great importance in realizing their enormous potentials for broad applications due to the advanced collective properties of nanoparticle ensembles. Various molecular ligands (e.g., small molecules, DNAs, proteins, and polymers) have been used to assist the organization of inorganic nanoparticles into functional structures at different hierarchical levels. Among others, polymers are particularly attractive for use in nanoparticle assembly, because of the complex architectures and rich functionalities of assembled structures enabled by polymers. Polymer-guided assembly of nanoparticles has emerged as a powerful route to fabricate functional materials with desired mechanical, optical, electronic or magnetic properties for a broad range of applications such as sensing, nanomedicine, catalysis, energy storage/conversion, data storage, electronics and photonics. In this review article, we summarize recent advances in the polymer-guided self-assembly of inorganic nanoparticles in both bulk thin films and solution, with an emphasis on the role of polymers in the assembly process and functions of resulting nanostructures. Precise control over the location/arrangement, interparticle interaction, and packing of inorganic nanoparticles at various scales are highlighted.
Collapse
Affiliation(s)
- Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China and Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Jie He
- Department of Chemistry and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06268, USA.
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.
| |
Collapse
|
8
|
Ma X, Gu M, Zhang L, Lin J, Tian X. Sequence-Regulated Supracolloidal Copolymers via Copolymerization-Like Coassembly of Binary Mixtures of Patchy Nanoparticles. ACS NANO 2019; 13:1968-1976. [PMID: 30624891 DOI: 10.1021/acsnano.8b08431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic copolymers of molecular systems serve as an inspiration for creation of one-dimensional copolymer-like superstructures via coassembly of anisometric nanoparticles. In contrast to the covalent and molecular copolymers, the details of formation mechanisms of copolymer-like superstructures, as well as the factors determining their length and the sequences of arranged nanoparticles, are still poorly understood. Herein, we propose a joint theoretical-computational framework to probe into the coassembly mechanism and kinetics of binary mixtures of patchy nanoparticles. By applying the coarse-grained molecular dynamics simulations, it is demonstrated that the coassembly of patchy nanoparticles markedly resembles many aspects of molecular step-growth copolymerization, and the sequences of nanoparticles inside the copolymer-like superstructures can be finely regulated by the relative activity and the initial ingredient of patchy nanoparticles as well as the coassembly strategy. A quantitatively copolymerization-like model is developed to account for the coassembly kinetics of patchy nanoparticles and the sequence distribution of arranged nanoparticles, all governed by the elaborate design of lower-level building units. The jointly theoretical and simulated studies offer mechanistic insights into the copolymerization-like kinetics and the sequence prediction for the coassembly of binary mixtures of patchy nanoparticles, paving the way toward the rational design of copolymer-like superstructures with various sequences and functionalities.
Collapse
Affiliation(s)
- Xiaodong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Mengxin Gu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
9
|
Li S, Zhang Z, Hou G, Liu J, Gao Y, Coates P, Zhang L. Self-assembly and structural manipulation of diblock-copolymer grafted nanoparticles in a homopolymer matrix. Phys Chem Chem Phys 2019; 21:11785-11796. [DOI: 10.1039/c9cp00872a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed coarse-grained molecular dynamics simulations are performed to investigate the structural and mechanical properties of nanoparticles (NPs) grafted with an amphiphilic AB diblock copolymer, with the A-block being compatible with NPs and the B-block being miscible with a homopolymer matrix.
Collapse
Affiliation(s)
- Sai Li
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Zhiyu Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Guanyi Hou
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Yangyang Gao
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| | - Phil Coates
- Joint-International Laboratory for Soft Matter Technologies Bradford-BUCT
- 100029 Beijing
- People's Republic of China
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- People's Republic of China
- Beijing Engineering Research Center of Advanced Elastomers
- Beijing University of Chemical Technology
| |
Collapse
|
10
|
Yu L, Shi R, Qian HJ, Lu ZY. Versatile fabrication of patchy nanoparticles via patterning of grafted diblock copolymers on NP surface. Phys Chem Chem Phys 2019; 21:1417-1427. [DOI: 10.1039/c8cp06699j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patchy nanoparticle formation via the patterning of grafted diblock copolymers on NP surface.
Collapse
Affiliation(s)
- Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Rui Shi
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
11
|
Ilnytskyi JM, Slyusarchuk A, Sokołowski S. Gelation of patchy ligand shell nanoparticles decorated by liquid-crystalline ligands: computer simulation study. SOFT MATTER 2018; 14:3799-3810. [PMID: 29717735 DOI: 10.1039/c8sm00356d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We consider the coarse-grained modelling of patchy ligand shell nanoparticles with liquid crystalline ligands. The cases of two, three, four and six symmetrically arranged patches of ligands are discussed, as well as the cases of their equatorial and icosahedral arrangement. A solution of decorated nanoparticles is considered within a slit-like pore with solid walls and the interior filled by a polar solvent. The ligands form physical cross-links between the nanoparticles due to strong liquid crystalline interaction, turning the solution into a gel-like structure. Gelation is carried out repeatedly starting each time from a freshly equilibrated dispersed state of nanoparticles. The gelation dynamics and the range of network characteristics of the gel are examined, depending on the type of patchy decoration and on the solution density. Emphasis is given to the theoretical prediction of the type of decoration and the solution density most suitable for producing a uniformly cross-linked and highly elastic gel structure.
Collapse
Affiliation(s)
- Jaroslav M Ilnytskyi
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1, Svientsitskii Str., 79011 Lviv, Ukraine.
| | | | | |
Collapse
|