1
|
Zhong F, Sun R, Huang S, Guo P, Li Q, Wang L, Sun H, Yao L. Determination of ligand selectivity to G-tetrad through an AMCA fluorescence quenching approach. Talanta 2024; 280:126732. [PMID: 39216423 DOI: 10.1016/j.talanta.2024.126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The selective binding of ligand molecules towards the 5' and 3' ends of G-quadruplex (G4) may differentially affect the physiological function of G4s. However, there is still a lack of sensitive and low-cost approaches to accurately measure the binding preference of ligands on G4s, although multiple ways have been developed to evaluate the interaction between ligands and G4s. Here, we propose a new protocol named G4-AFQ to test the selectivity of ligands towards the two terminal G-tetrads of G4s. In this protocol, the fluorophore AMCA is respectively modified at the 5' or 3' end of G4, and which end of AMCA fluorescence is quenched means that the ligand binds to the G-tetrad at that end. Through G4-AFQ, the affinity constant of ligands towards the binding site can also be obtained. Compared with the commonly used nuclear magnetic resonance (NMR) method, G4-AFQ is more convenient, sensitive, cost-effective, and suitable for the measurement of the vast majority of G4 ligands, with a great potential for widespread application.
Collapse
Affiliation(s)
- Fanru Zhong
- School of Chemical Engineering, Northwest University, Xi'an, 710069, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, 710069, PR China
| | - Pengqi Guo
- School of Chemical Engineering, Northwest University, Xi'an, 710069, PR China.
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lixia Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
2
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
3
|
Yan MP, Wee CE, Yen KP, Stevens A, Wai LK. G-quadruplex ligands as therapeutic agents against cancer, neurological disorders and viral infections. Future Med Chem 2023; 15:1987-2009. [PMID: 37933551 DOI: 10.4155/fmc-2023-0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
G-quadruplexes (G4s) within the human genome have undergone extensive molecular investigation, with a strong focus on telomeres, gene promoters and repetitive regulatory sequences. G4s play central roles in regulating essential biological processes, including telomere maintenance, replication, transcription and translation. Targeting these molecular processes with G4-binding ligands holds substantial therapeutic potential in anticancer treatments and has also shown promise in treating neurological, skeletal and muscular disorders. The presence of G4s in bacterial and viral genomes also suggests that G4-binding ligands could be a critical tool in fighting infections. This review provides an overview of the progress and applications of G4-binding ligands, their proposed mechanisms of action, challenges faced and prospects for their utilization in anticancer treatments, neurological disorders and antiviral activities.
Collapse
Affiliation(s)
- Mock Phooi Yan
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Chua Eng Wee
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| | - Khor Poh Yen
- Faculty Pharmacy & Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak, 3, Jalan Greentown, Ipoh, Perak, 30450, Malaysia
| | - Aaron Stevens
- Department of Pathology & Molecular Medicine, University of Otago, Wellington, 6021, New Zealand
| | - Lam Kok Wai
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, 50300, Malaysia
| |
Collapse
|
4
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
5
|
Exploring the Interaction of G-quadruplex Binders with a (3 + 1) Hybrid G-quadruplex Forming Sequence within the PARP1 Gene Promoter Region. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154792. [PMID: 35897968 PMCID: PMC9369712 DOI: 10.3390/molecules27154792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
The enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter was recently identified. In this study, we explore the interaction of known G-quadruplex binders with the G-quadruplex structure found in the PARP gene promoter region. The results obtained by NMR, CD, and fluorescence titration, also confirmed by molecular modeling studies, demonstrate a variety of different binding modes with small stabilization of the G-quadruplex sequence located at the PARP1 promoter. Surprisingly, only pyridostatin produces a strong stabilization of the G-quadruplex-forming sequence. This evidence makes the identification of a proper (3+1) stabilizing ligand a challenging goal for further investigation.
Collapse
|
6
|
Guan L, Mao Y, Zhou Y, Feng X, Fu, Yile. Research Progress in Cyanine-Based Recognition Probes for G-Quadruplex DNA. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Wickhorst PJ, Ihmels H, Paululat T. Studies on the Interactions of 3,11-Difluoro-6,8,13-trimethyl-8 H-quino[4,3,2- kl]acridinium and Insulin with the Quadruplex-Forming Oligonucleotide Sequence a2 from the Insulin-Linked Polymorphic Region. Molecules 2021; 26:molecules26216595. [PMID: 34771003 PMCID: PMC8587938 DOI: 10.3390/molecules26216595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, several quadruplex-DNA-forming sequences have been identified in the insulin-linked polymorphic region (ILPR), which is a guanine-rich oligonucleotide sequence in the promoter region of insulin. The formation of this non-canonical quadruplex DNA (G4-DNA) has been shown to be involved in the biological activity of the ILPR, specifically with regard to its interplay with insulin. In this context, this contribution reports on the investigation of the association of the quadruplex-forming ILPR sequence a2 with insulin as well as with the well-known G4-DNA ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium (1), also named RHPS4, by optical and NMR spectroscopy. CD- and NMR-spectroscopic measurements confirmed the preferential formation of an antiparallel quadruplex structure of a2 with four stacked guanine quartets. Furthermore, ligand 1 has high affinity toward a2 and binds by terminal π stacking to the G1-G11-G15-G25 quartet. In addition, the spectroscopic studies pointed to an association of insulin to the deoxyribose backbone of the loops of a2.
Collapse
|
8
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
9
|
Mulliri S, Laaksonen A, Spanu P, Farris R, Farci M, Mingoia F, Roviello GN, Mocci F. Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA. Int J Mol Sci 2021; 22:6028. [PMID: 34199659 PMCID: PMC8199725 DOI: 10.3390/ijms22116028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
Herein we describe a combined experimental and in silico study of the interaction of a series of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives (PBTs) with parallel G-quadruplex (GQ) DNA aimed at correlating their previously reported anticancer activities and the stabilizing effects observed by us on c-myc oncogene promoter GQ structure. Circular dichroism (CD) melting experiments were performed to characterize the effect of the studied PBTs on the GQ thermal stability. CD measurements indicate that two out of the eight compounds under investigation induced a slight stabilizing effect (2-4 °C) on GQ depending on the nature and position of the substituents. Molecular docking results allowed us to verify the modes of interaction of the ligands with the GQ and estimate the binding affinities. The highest binding affinity was observed for ligands with the experimental melting temperatures (Tms). However, both stabilizing and destabilizing ligands showed similar scores, whilst Molecular Dynamics (MD) simulations, performed across a wide range of temperatures on the GQ in water solution, either unliganded or complexed with two model PBT ligands with the opposite effect on the Tms, consistently confirmed their stabilizing or destabilizing ability ascertained by CD. Clues about a relation between the reported anticancer activity of some PBTs and their ability to stabilize the GQ structure of c-myc emerged from our study. Furthermore, Molecular Dynamics simulations at high temperatures are herein proposed for the first time as a means to verify the stabilizing or destabilizing effect of ligands on the GQ, also disclosing predictive potential in GQ-targeting drug discovery.
Collapse
Affiliation(s)
- Simone Mulliri
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Pietro Spanu
- Istituto di Chimica Biomolecolare, ICB-CNR-Trav. La Crucca 3, 07100 Sassari, Italy;
| | - Riccardo Farris
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Matteo Farci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
10
|
Pal S, Paul S. An in silico investigation of the binding modes and pathway of APTO-253 on c-KIT G-quadruplex DNA. Phys Chem Chem Phys 2021; 23:3361-3376. [PMID: 33502401 DOI: 10.1039/d0cp05210h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The stability of c-KIT G-quadruplex DNA via ligands has been a significant concern in the growing field of cancer therapy. Thus, it is very important to understand the mechanism behind the high binding affinity of the small drug molecules on the c-KIT G-quadruplex DNA. In this study, we have investigated the binding mode and pathway of the APTO-253 ligand on the c-KIT G-quadruplex DNA employing a total of 10 μs all atom molecular dynamics simulations and further 8.82 μs simulations via the umbrella sampling method using both OL15 and BSC1 latest force fields for DNA structures. From the cluster structure analysis, mainly three binding pathways i.e., top, bottom and side loop stacking modes are identified. Moreover, RMSD, RMSF and 2D-RMSD values indicate that the c-KIT G-quadruplex DNA and APTO-253 molecules are stable throughout the simulation run. Furthermore, the number of hydrogen bonds in each tetrad and the distance between the two central K+ cations confirm that the c-KIT G-quadruplex DNA maintains its conformation in the process of complex formation with the APTO-253 ligand. The binding free energies and the minimum values in the potential of mean forces suggest that the binding processes are energetically favorable. Furthermore, we have found that the bottom stacking mode is the most favorable binding mode among all the three modes for the OL15 force field. However, for the BSC1 force field, both the top and bottom binding modes of the APTO-253 ligand in c-KIT G-quadruplex DNA are comparable to each other. To investigate the driving force for the complex formation, we have noticed that the van der Waals (vdW) and π-π stacking interactions are mainly responsible. Our detailed studies provide useful information for the discovery of novel drugs in the field of stabilization of G-quadruplex DNAs.
Collapse
Affiliation(s)
- Saikat Pal
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam, 781039, India.
| | | |
Collapse
|
11
|
Stadlbauer P, Islam B, Otyepka M, Chen J, Monchaud D, Zhou J, Mergny JL, Šponer J. Insights into G-Quadruplex-Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding. J Chem Theory Comput 2021; 17:1883-1899. [PMID: 33533244 DOI: 10.1021/acs.jctc.0c01176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine quadruplex nucleic acids (G4s) are involved in key biological processes such as replication or transcription. Beyond their biological relevance, G4s find applications as biotechnological tools since they readily bind hemin and enhance its peroxidase activity, creating a G4-DNAzyme. The biocatalytic properties of G4-DNAzymes have been thoroughly studied and used for biosensing purposes. Despite hundreds of applications and massive experimental efforts, the atomistic details of the reaction mechanism remain unclear. To help select between the different hypotheses currently under investigation, we use extended explicit-solvent molecular dynamics (MD) simulations to scrutinize the G4/hemin interaction. We find that besides the dominant conformation in which hemin is stacked atop the external G-quartets, hemin can also transiently bind to the loops and be brought to the external G-quartets through diverse delivery mechanisms. The simulations do not support the catalytic mechanism relying on a wobbling guanine. Similarly, the catalytic role of the iron-bound water molecule is not in line with our results; however, given the simulation limitations, this observation should be considered with some caution. The simulations rather suggest tentative mechanisms in which the external G-quartet itself could be responsible for the unique H2O2-promoted biocatalytic properties of the G4/hemin complexes. Once stacked atop a terminal G-quartet, hemin rotates about its vertical axis while readily sampling shifted geometries where the iron transiently contacts oxygen atoms of the adjacent G-quartet. This dynamics is not apparent from the ensemble-averaged structure. We also visualize transient interactions between the stacked hemin and the G4 loops. Finally, we investigated interactions between hemin and on-pathway folding intermediates of the parallel-stranded G4 fold. The simulations suggest that hemin drives the folding of parallel-stranded G4s from slip-stranded intermediates, acting as a G4 chaperone. Limitations of the MD technique are briefly discussed.
Collapse
Affiliation(s)
- Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Barira Islam
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 8, 779 00 Olomouc, Czech Republic
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC, Dijon 21078, France
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jean-Louis Mergny
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, INSERM, Institut Polytechnique de Paris, 91128 Palaiseau cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
12
|
Avagliano D, Tkaczyk S, Sánchez-Murcia PA, González L. Enhanced Rigidity Changes Ultraviolet Absorption: Effect of a Merocyanine Binder on G-Quadruplex Photophysics. J Phys Chem Lett 2020; 11:10212-10218. [PMID: 33206544 PMCID: PMC7735745 DOI: 10.1021/acs.jpclett.0c03070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 05/10/2023]
Abstract
The urge to discover selective fluorescent binders to G-quadruplexes (G4s) for rapid diagnosis must be linked to understand the effect that those have on the DNA photophysics. Herein, we report on the electronic excited states of a bound merocyanine dye to c-Myc G4 using extensive multiscale quantum mechanics/molecular mechanics calculations. We find that the absorption spectra of c-Myc G4, both without and with the intercalated dye, are mainly composed of exciton states and mixed local/charge-transfer states. The presence of merocyanine hardly affects the energy range of the guanine absorption or the number of guanines excited. However, it triggers a substantial amount (16%) of detrimental pure charge-transfer states involving oxidized guanines. We identify the rigidity introduced by the probe in G4, reducing the overlap among guanines, as the one responsible for the changes in the exciton and charge-transfer states, ultimately leading to a redshift of the absorption maximum.
Collapse
Affiliation(s)
- Davide Avagliano
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Sara Tkaczyk
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Pedro A. Sánchez-Murcia
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| |
Collapse
|
13
|
Sullivan HJ, Chen B, Wu C. Molecular Dynamics Study on the Binding of an Anticancer DNA G-Quadruplex Stabilizer, CX-5461, to Human Telomeric, c-KIT1, and c-Myc G-Quadruplexes and a DNA Duplex. J Chem Inf Model 2020; 60:5203-5224. [PMID: 32820923 DOI: 10.1021/acs.jcim.0c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA G-quadruplex (G4) stabilizer, CX-5461, is in phase I/II clinical trials for advanced cancers with BRCA1/2 deficiencies. A FRET-melting temperature increase assay measured the stabilizing effects of CX-5461 to a DNA duplex (∼10 K), and three G4 forming sequences negatively implicated in the cancers upon its binding: human telomeric (∼30 K), c-KIT1 (∼27 K), and c-Myc (∼25 K). Without experimentally solved structures of these CX-5461-G4 complexes, CX-5461's interactions remain elusive. In this study, we performed a total of 73.5 μs free ligand molecular dynamics binding simulations of CX-5461 to the DNA duplex and three G4s. Three binding modes (top, bottom, and side) were identified for each system and their thermodynamic, kinetic, and structural nature were deciphered. The molecular mechanics/Poisson Boltzmann surface area binding energies of CX-5461 were calculated for the human telomeric (-28.6 kcal/mol), c-KIT1 (-23.9 kcal/mol), c-Myc (-22.0 kcal/mol) G4s, and DNA duplex (-15.0 kcal/mol) systems. These energetic differences coupled with structural differences at the 3' site explained the different melting temperatures between the G4s, while CX-5461's lack of intercalation to the duplex explained the difference between the G4s and duplex. Based on the interaction insight, CX-5461 derivatives were designed and docked, showing higher selectivity to the G4s over the duplex.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028 USA
| |
Collapse
|
14
|
Yildiz U, Kandemir I, Cömert F, Akkoç S, Coban B. Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds- and G-quadruplex-DNA binding studies and related biological activities. Mol Biol Rep 2020; 47:1563-1572. [PMID: 32095985 DOI: 10.1007/s11033-019-05239-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023]
Abstract
Two new cytotoxic 1,8-naphthalimide derivatives have been synthesized and characterized. Their biological activities as cytotoxicity and antimicrobial activities and inhibitory activities against DNA-polymerase were evaluated. The interactions of compounds with double-stranded- and quadruple-DNA have been studied by UV-Vis, fluorescent intercalator displacement, competition dialysis, circular dichroism and the findings were compared with the parent naphthalimide and the other compounds. The results show that both compounds (1 and 2) and the parent compound NI have strong cytotoxic activities against Beas-2B, MCF-7, HepG2 and MDA-MB-231 cancer cell lines, antimicrobial activities against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and inhibitory activities towards Taq-polymerase and transcriptase. These novel cationic compounds 1 and 2 can stabilize G-quadruplexes DNA according to thermal denaturation experiments, they change the 3D structure of the DNA (see details in CD experiments) and they exhibit different binding affinities for q-DNA and ds-DNA revealed by spectrophotometric titrations and competitive dialysis studies.
Collapse
Affiliation(s)
- Ufuk Yildiz
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Irfan Kandemir
- Department of Biology, Faculty of Science, Ankara University, 06100, Tandoğan, Ankara, Turkey
| | - Füsun Cömert
- Department of Microbiology, Faculty of Medicine, Bulent Ecevit University, 67600, Kozlu, Zonguldak, Turkey
| | - Senem Akkoç
- Department of Chemistry, Faculty of Science, Erciyes University, 38030, Melikgazi, Kayseri, Turkey.,Faculty of Pharmacy, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Burak Coban
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey.
| |
Collapse
|
15
|
Mulholland K, Sullivan HJ, Garner J, Cai J, Chen B, Wu C. Three-Dimensional Structure of RNA Monomeric G-Quadruplex Containing ALS and FTD Related G4C2 Repeat and Its Binding with TMPyP4 Probed by Homology Modeling based on Experimental Constraints and Molecular Dynamics Simulations. ACS Chem Neurosci 2020; 11:57-75. [PMID: 31800202 DOI: 10.1021/acschemneuro.9b00572] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The G-quadruplex-forming hexanucleotide repeat expansion (HRE), d(G4C2)n, within the human C9orf72 gene is the root cause for familial amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). A recent study has shown that TMPyP4 has good potential to work as a RNA G-quadruplex binder in treating ALS and FTD. Although the high-resolution structure of the monomeric DNA antiparallel G-quadruplex form of the monomeric hexanucleotide repeat was recently solved, the RNA parallel G-quadruplex structure and its complex with TMPyP4 are not available yet. In this study, we first constructed the homology model for the parallel monomeric RNA G-quadruplex of r(G4C2)3G4 based on experimental constraints and the parallel monomeric G-quadruplex DNA crystal structure. Although the G-tetra core of the homology model was stable observed in 15 μs molecular dynamics (MD) simulations, we observed that the loops adopt additional conformations besides the initial crystal conformation, where TMPyP4 binding was found to reduce the loop fluctuation of the RNA monomeric G-quadruplex. Next, we probed the elusive binding behavior of TMPyP4 to the RNA monomeric G-quadruplex. Encouragingly, the binding modes observed are similar to the modes observed in two experimental complexes of a parallel DNA G-quadruplex with TMPyP4. We also constructed a Markov state model to provide insights into the binding pathways. Together, the findings from our study may assist future development of G-quadruplex-specific ligands in the treatment of neurodegenerative diseases like ALS and FTD.
Collapse
Affiliation(s)
- Kelly Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Holli-Joi Sullivan
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Joseph Garner
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Jun Cai
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Brian Chen
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
16
|
Molecular dynamics simulations of G-quadruplexes: The basic principles and their application to folding and ligand binding. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2020. [DOI: 10.1016/bs.armc.2020.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Chen B, Fountain G, Sullivan HJ, Paradis N, Wu C. To probe the binding pathway of a selective compound (D089-0563) to c-MYC Pu24 G-quadruplex using free ligand binding simulations and Markov state model analysis. Phys Chem Chem Phys 2020; 22:22567-22583. [DOI: 10.1039/d0cp03863f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive.
Collapse
Affiliation(s)
- Brian Chen
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| | | | | | | | - Chun Wu
- Rowan University
- College of Science and Mathematics
- Glassboro
- USA
| |
Collapse
|
18
|
Khoshbin Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Verdian A. The investigation of the G-quadruplex aptamer selectivity to Pb 2+ ion: a joint molecular dynamics simulation and density functional theory study. J Biomol Struct Dyn 2019; 38:3659-3675. [PMID: 31496379 DOI: 10.1080/07391102.2019.1664933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aptamers with the ability to form a G-quadruplex structure can be stable in the presence of some ions. Hence, study of the interactions between such aptamers and ions can be beneficial to determine the highest selective aptamer toward an ion. In this article, molecular dynamics (MD) simulations and quantum mechanics (QM) calculations have been applied to investigate the selectivity of the T30695 aptamer toward Pb2+ in comparison with some ions. The Free Energy Landscape (FEL) analysis indicates that Pb2+ has remained inside the aptamer during the MD simulation, while the other ions have left it. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) binding energies prove that the conformational stability of the aptamer is the highest in the presence of Pb2+. According to the compaction parameters, the greatest compressed ion-aptamer complex, and hence, the highest ion-aptamer interaction have been induced in the presence of Pb2+. The contact maps clarify the closer contacts between the nucleotides of the aptamer in the presence of Pb2+. The density functional theory (DFT) results show that Pb2+ forms the most stable complex with the aptamer, which is consistent with the MD results. The QM calculations reveal that the N-H bonds and the O…H distances are the longest and the shortest, respectively, in the presence of Pb2+. The obtained results verify that the strongest hydrogen bonds (HBs), and hence, the most compressed aptamer structure are induced by Pb2+. Besides, atoms in molecules (AIM) and natural bond orbital (NBO) analyses confirm the results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
19
|
Evaluation of the selectivity of G-quadruplex ligands in living cells with a small molecule fluorescent probe. Anal Chim Acta X 2019; 2:100017. [PMID: 33117978 PMCID: PMC7587023 DOI: 10.1016/j.acax.2019.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
G-quadruplex has been an emerging target for drug design due to its physiologically important roles in oncology. A number of quadruplex-interactive ligands have been developed by synthetic and medicinal chemists over the past decades. However, the great challenge still remains that the method for detecting the specific targeting of these ligands to the G-quadruplex structures in cells is still lacking. Herein, a detection system for directly identifying the specific targeting of a ligand to DNA G-quadruplexes in cells was constructed by using a small-molecular fluorescent probe (IMT) as a fluorescent indicator. Four typical ligands have been successfully evaluated, demonstrating the promising application of this detection system in the screening and evaluation of quadruplex-specific therapeutic agents.
Collapse
|
20
|
Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019; 24:molecules24061010. [PMID: 30871220 PMCID: PMC6471034 DOI: 10.3390/molecules24061010] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022] Open
Abstract
Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.
Collapse
|
21
|
Si MK, Pramanik SK, Ganguly B. Tuning the ring strain effect in acridine derivatives on binding affinity with G-quadruplex-DNA: A computational and experimental study. Int J Biol Macromol 2018; 124:1177-1185. [PMID: 30521912 DOI: 10.1016/j.ijbiomac.2018.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
Search for inhibitors to stabilize the telomeric G-quadruplex in order to deter telomerase activity is an active area of research. Inhibitors play an important role to initiate the tumor cell mortalization process. This work reports for the first time of acridine derivative with four membered ammonium rings at the side chain to surpass the binding ability against BRACO-19 with G-quadruplex-DNA. It is known in the literature that acridine based molecule BRACO-19 can effectively bind with G-quadruplex-DNA. The computational study performed in this study revealed that the binding ability of acridine based molecule can be augmented with subtle variation in the molecular structure of the drug like candidates. Steered molecular dynamics (SMD) performed with the acridine derivatives and G-quadruplex DNA showed the importance of ring strain to the side chain of those ligand molecules. The rupture force analysis, hydrogen bonding interactions and the calculated free energies in MM-PBSA method suggest that ligand 3 is superior than that of BRACO-19. The synthesized ligand 3 and BRACO-19 showed the binding constants obtained from ITC measurements are 4 × 106 mol-1 and 2.6 × 106, which corroborates the computational findings.
Collapse
Affiliation(s)
- Mrinal Kanti Si
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, India; Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India
| | - Sumit Kumar Pramanik
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit (Analytical and Environmental Science Division and Centralized Instrument Facility), CSIR-Central Salt & Marine Chemicals Research Institute, India; Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat 364 002, India.
| |
Collapse
|
22
|
Sullivan HJ, Readmond C, Radicella C, Persad V, Fasano TJ, Wu C. Binding of Telomestatin, TMPyP4, BSU6037, and BRACO19 to a Telomeric G-Quadruplex-Duplex Hybrid Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. ACS OMEGA 2018; 3:14788-14806. [PMID: 30555989 PMCID: PMC6289566 DOI: 10.1021/acsomega.8b01574] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/11/2018] [Indexed: 06/09/2023]
Abstract
A promising anticancer therapeutic strategy is the stabilization of telomeric G-quadruplexes using G-quadruplex-binding small molecules. Although many G-quadruplex-specific ligands have been developed, their low potency and selectivity to G-quadruplexes over duplex remains unsolved. Recently, a crystal structure of a telomeric 3' quadruplex-duplex hybrid was reported and the quadruplex-duplex interface was suggested to a good target to address the issues. However, there are no high-resolution complex structures reported for G-quadruplex ligands except for a docked BSU6037. In this study, molecular dynamic (MD) binding simulations with a free ligand were used to study binding poses and dynamics of four representative ligands: telomestatin, TMPyP4, BSU6037, and BRACO19. The MD data showed that BSU6037 was able to fully intercalate into the interface whereas TMPyP4 and BRACO19 could only maintain partial intercalation into the interface and telomestatin only binds at the quadruplex and duplex ends. Both linear ligands, BSU6037 and BRACO19, were able to interact with the interface, yet they were not selective over duplex DNA. The DNA geometry, binding modes, and binding pathways were systematically characterized, and the binding energy was calculated and compared for each system. The interaction of the ligands to the interface was by the means of an induced-fit binding mechanism rather than a lock-key mechanism, consisting of the DNA unfolding at the interface to allow entrance of the drug and then the refolding and repacking of the DNA and the ligand to further stabilize the G-quadruplex. On the basis of the findings in this study, modifications were suggested to optimize the interface binding for TMPyp4 and telomestatin.
Collapse
Affiliation(s)
- Holli-Joi Sullivan
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Carolyn Readmond
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Christina Radicella
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Victoria Persad
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Thomas J. Fasano
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Chemistry
& Biochemistry and Department of Molecular & Cellular Biosciences, College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
23
|
Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S, Sponer J. Structural Dynamics of Lateral and Diagonal Loops of Human Telomeric G-Quadruplexes in Extended MD Simulations. J Chem Theory Comput 2018; 14:5011-5026. [DOI: 10.1021/acs.jctc.8b00543] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barira Islam
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marek Havrila
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Shozeb Haider
- UCL School of
Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Jiri Sponer
- Institute of Biophysics
of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
24
|
Wang Z, Li J, Liu JP. Effects of cation charges on the binding of stabilizers with human telomere and TERRA G-quadruplexes. J Biomol Struct Dyn 2018; 37:1908-1921. [DOI: 10.1080/07391102.2018.1471416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiguo Wang
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 311121, China
| | - Jianfeng Li
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 311121, China
| | - Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University , Hangzhou, Zhejiang 311121, China
- Department of Immunology, Central Eastern Clinical School, Monash University , Melbourne, Vitoria 3004, Australia
- Hudson Institute of Medical Research , Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Science, Monash University , Clayton, Victoria 3168, Australia
| |
Collapse
|
25
|
Machireddy B, Kalra G, Jonnalagadda S, Ramanujachary K, Wu C. Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields. J Chem Inf Model 2017; 57:2846-2864. [PMID: 29028340 DOI: 10.1021/acs.jcim.7b00287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human telomeric DNA G-quadruplex has been identified as a good therapeutic target in cancer treatment. G-quadruplex-specific ligands that stabilize the G-quadruplex have great potential to be developed as anticancer agents. Two crystal structures (an apo form of parallel stranded human telomeric G-quadruplex and its holo form in complex with BRACO19, a potent G-quadruplex ligand) have been solved, yet the binding mechanism and pathway remain elusive. In this study, we simulated the binding of a free BRACO19 molecule to the apo form of the G-quadruplex using the latest AMBER DNA (OL15) and ligand (GAFF2) force fields. Three binding modes have been identified: top stacking, bottom intercalation, and groove binding. Bottom intercalation (51% of the population) resembles the bottom binding pose in the complex crystal structure very well. The groove binding mode is less stable than the bottom binding mode and is likely to be an intermediate state leading to the bottom binding mode. A flip-insertion mechanism was observed in the bottom intercalation mode, during which flipping of the bases outward makes space for ligand insertion, after which the bases flip back to increase the stability of the complex. In addition to reproducing the base-flipping behavior for some loop residues upon ligand binding, the direct alignment type of the ATAT-tetrad was observed in our simulations for the first time. These successes provide initial support for using this combination of the OL15 and GAFF2 force fields to study quadruplex-ligand interactions.
Collapse
Affiliation(s)
- Babitha Machireddy
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Gurmannat Kalra
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Subash Jonnalagadda
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Kandalam Ramanujachary
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| | - Chun Wu
- College of Science and Mathematics, Rowan University , Glassboro, New Jersey 08028, United States
| |
Collapse
|