1
|
Gao Y, Islam MT, Otuokere PU, Pulikkathara M, Liu Y. The Stability of UV-Defluorination-Driven Crosslinked Carbon Nanotubes: A Raman Study. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1464. [PMID: 39269126 PMCID: PMC11397521 DOI: 10.3390/nano14171464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Carbon nanotubes (CNTs) are often regarded as semi-rigid, all-carbon polymers. However, unlike conventional polymers that can form 3D networks such as hydrogels or elastomers through crosslinking in solution, CNTs have long been considered non-crosslinkable under mild conditions. This perception changed with our recent discovery of UV-defluorination-driven direct crosslinking of CNTs in solution. In this study, we further investigate the thermal stability of UV-defluorination-driven crosslinked CNTs, revealing that they are metastable and decompose more readily than either pristine or fluorinated CNTs under Raman laser irradiation. Using Raman spectroscopy under controlled laser power, we examined both single-walled and multi-walled fluorinated CNTs. The results demonstrate that UV-defluorinated CNTs exhibit reduced thermal stability compared to their pristine or untreated fluorinated counterparts. This instability is attributed to the strain on the intertube crosslinking bonds resulting from the curved carbon lattice of the linked CNTs. The metallic CNTs in the crosslinked CNT networks decompose and revert to their pristine state more readily than the semiconducting ones. The inherent instability of crosslinked CNTs leads to combustion at temperatures approximately 100 °C lower than those required for non-crosslinked fluorinated CNTs. This property positions crosslinked CNTs as promising candidates for applications where mechanically robust, lightweight materials are needed, along with feasible post-use removal options.
Collapse
Affiliation(s)
- Yunxiang Gao
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Mohammad Tarequl Islam
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | | | - Merlyn Pulikkathara
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Yuemin Liu
- Department of Chemistry and Physics, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
2
|
Gervillié C, Dubois M, El-Ghozzi M, Berthon-Fabry S, Boisard A, Labbé J, Guérin K. Optimized Electrode/Electrolyte Interface of MWCNT/SnO 2 Composite through Gas-Solid Fluorination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28150-28163. [PMID: 34109783 DOI: 10.1021/acsami.1c05261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The benefit of enriching solid-electrolyte interface with fluorine atoms through the use of fluorinated additives into the electrolyte composition has recently gained popularity for anode materials used in secondary lithium-ion batteries. Another strategy is to provide these fluorine atoms via surface fluorination of the electrode material, particularly for multiwalled carbon nanotube (MWCNT)/SnO2-based composites where fluorination must act selectively on SnO2. Our study presents two methods of surface fluorination applied on MWCNT/SnO2, one using F2(g) and the other XeF2(s). These fluorinating agents are known for their different particle penetration depths. An ultrathin and very dense fluorinated layer achieved by the action of F2(g) allows to form a very stable interface leading to gravimetric capacities of 789 mA h g-1 after 50 cycles. A thin and porous fluorinated layer made by the action of XeF2(s) favors the formation of a new Sn-based fluorinated phase, never reported in the literature, which also stabilizes capacities over 50 cycles. In any case, the value of adding fluorine atoms to the surface of the electrode material to improve cycle stability is demonstrated.
Collapse
Affiliation(s)
- Charlotte Gervillié
- Centre for processes, Renewable Energies and Energy Systems (PERSEE), MINES ParisTech, PSL University, CS 10207 Rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
- Safran Tech, SAFRAN, Rue des jeunes Bois, 78117 Châteaufort, France
| | - Marc Dubois
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Malika El-Ghozzi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Sandrine Berthon-Fabry
- Centre for processes, Renewable Energies and Energy Systems (PERSEE), MINES ParisTech, PSL University, CS 10207 Rue Claude Daunesse, 06904 Sophia Antipolis Cedex, France
| | - Aurélie Boisard
- Safran Tech, SAFRAN, Rue des jeunes Bois, 78117 Châteaufort, France
| | - Julien Labbé
- Safran Tech, SAFRAN, Rue des jeunes Bois, 78117 Châteaufort, France
| | - Katia Guérin
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Liu X, Li X, Li Y, Qin R, Huang F, Wang X, Liu X. Regulating the Bonding Nature and Location of C–F Bonds in Fluorinated Graphene by Doping Nitrogen Atoms. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yulong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Rui Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Feng Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
4
|
Zhou Y, Cheng F, Hong Y, Huang J, Zhang X, Liao X. Rapid and Sensitive Detection of Isoproturon Via an Electrochemical Sensor Based on Highly Water-Dispersed Carbon Hybrid Material. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01707-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
|
6
|
Liu Y, Zhang Y, Zhang C, Huang B, Li Y, Lai W, Wang X, Liu X. Low temperature preparation of highly fluorinated multiwalled carbon nanotubes activated by Fe 3O 4 to enhance microwave absorbing property. NANOTECHNOLOGY 2018; 29:365703. [PMID: 29889048 DOI: 10.1088/1361-6528/aacbae] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Conventional approaches to preparing highly fluorinated multiwalled carbon nanotubes (MWCNTs) always require a high temperature. This paper presents a catalytic approach to realizing the effective fluorination of MWNCTs at room temperature (RT). Fe3O4/MWCNTs composites with Fe3O4 loaded on MWCNTs were first prepared using the solvothermal method, followed by fluorination treatment at RT. The attachment of Fe3O4 changes the charge distribution and dramatically improves the fluorination activity of MWCNTs. Consequently, the fluorine content of fluorinated Fe3O4/MWCNTs (F-Fe3O4/MWCNTs) can reach up to 17.13 at% (almost six times that of the unloaded sample) only after fluorination at room temperature, which leads to an obvious decrease in permittivity. Besides, the partial fluorination of Fe3O4 brings about abnormally enhanced permeability due to strengthened exchange resonance. Benefiting from the lower permittivity and higher permeability, F-Fe3O4/CNTs composite exhibits increased impedance matching and thus an enhanced microwave absorption property with a minimal reflection loss of -45 dB at 2.61 mm when the filler content is 13 wt%. The efficient absorption bandwidth (<-10 dB) reaches 4.1 GHz when the thickness is 2.5 mm. This work illustrates a novel catalytic approach to preparing highly fluorinated MWCNTs as promising microwave absorbers, and the design concept can also be extended to the fluorination of other carbon materials.
Collapse
Affiliation(s)
- Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|