1
|
Natarajan L, De Sciscio ML, Nardi AN, Sekhar A, Del Giudice A, D’Abramo M, Naganathan AN. A finely balanced order-disorder equilibrium sculpts the folding-binding landscape of an antibiotic sequestering protein. Proc Natl Acad Sci U S A 2024; 121:e2318855121. [PMID: 38709926 PMCID: PMC11098121 DOI: 10.1073/pnas.2318855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/24/2024] [Indexed: 05/08/2024] Open
Abstract
TipA, a MerR family transcription factor from Streptomyces lividans, promotes antibiotic resistance by sequestering broad-spectrum thiopeptide-based antibiotics, thus counteracting their inhibitory effect on ribosomes. TipAS, a minimal binding motif which is expressed as an isoform of TipA, harbors a partially disordered N-terminal subdomain that folds upon binding multiple antibiotics. The extent and nature of the underlying molecular heterogeneity in TipAS that shapes its promiscuous folding-function landscape is an open question and is critical for understanding antibiotic-sequestration mechanisms. Here, combining equilibrium and time-resolved experiments, statistical modeling, and simulations, we show that the TipAS native ensemble exhibits a pre-equilibrium between binding-incompetent and binding-competent substates, with the fully folded state appearing only as an excited state under physiological conditions. The binding-competent state characterized by a partially structured N-terminal subdomain loses structure progressively in the physiological range of temperatures, swells on temperature increase, and displays slow conformational exchange across multiple conformations. Binding to the bactericidal antibiotic thiostrepton follows a combination of induced-fit and conformational-selection-like mechanisms, via partial binding and concomitant stabilization of the binding-competent substate. These ensemble features are evolutionarily conserved across orthologs from select bacteria that infect humans, underscoring the functional role of partial disorder in the native ensemble of antibiotic-sequestering proteins belonging to the MerR family.
Collapse
Affiliation(s)
- Lawanya Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| | | | | | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bengaluru560 012, India
| | | | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome00185, Italy
| | - Athi N. Naganathan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
2
|
Ghosh C, Nagpal S, Muñoz V. Molecular simulations integrated with experiments for probing the interaction dynamics and binding mechanisms of intrinsically disordered proteins. Curr Opin Struct Biol 2024; 84:102756. [PMID: 38118365 PMCID: PMC11242915 DOI: 10.1016/j.sbi.2023.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Intrinsically disordered proteins (IDPs) exploit their plasticity to deploy a rich panoply of soft interactions and binding phenomena. Advances in tailoring molecular simulations for IDPs combined with experimental cross-validation offer an atomistic view of the mechanisms that control IDP binding, function, and dysfunction. The emerging theme is that unbound IDPs autonomously form transient local structures and self-interactions that determine their binding behavior. Recent results have shed light on whether and how IDPs fold, stay disordered or drive condensation upon binding; how they achieve binding specificity and select among competing partners. The disorder-binding paradigm is now being proactively used by researchers to target IDPs for rational drug design and engineer molecular responsive elements for biosensing applications.
Collapse
Affiliation(s)
- Catherine Ghosh
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA. https://twitter.com/cat_ghosh
| | - Suhani Nagpal
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA; OpenEye, Cadence Molecular Sciences, Boston, 02114 MA, USA
| | - Victor Muñoz
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 CA, USA; Department of Bioengineering, University of California at Merced, Merced, 95343 CA, USA.
| |
Collapse
|
3
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
4
|
Mitra S, Oikawa H, Rajendran D, Kowada T, Mizukami S, Naganathan AN, Takahashi S. Flexible Target Recognition of the Intrinsically Disordered DNA-Binding Domain of CytR Monitored by Single-Molecule Fluorescence Spectroscopy. J Phys Chem B 2022; 126:6136-6147. [PMID: 35969476 PMCID: PMC9422980 DOI: 10.1021/acs.jpcb.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Indexed: 11/29/2022]
Abstract
The intrinsically disordered DNA-binding domain of cytidine repressor (CytR-DBD) folds in the presence of target DNA and regulates the expression of multiple genes in E. coli. To explore the conformational rearrangements in the unbound state and the target recognition mechanisms of CytR-DBD, we carried out single-molecule Förster resonance energy transfer (smFRET) measurements. The smFRET data of CytR-DBD in the absence of DNA show one major and one minor population assignable to an expanded unfolded state and a compact folded state, respectively. The population of the folded state increases and decreases upon titration with salt and denaturant, respectively, in an apparent two-state manner. The peak FRET efficiencies of both the unfolded and folded states change continuously with denaturant concentration, demonstrating the intrinsic flexibility of the DNA-binding domain and the deviation from a strict two-state transition. Remarkably, the CytR-DBD exhibits a compact structure when bound to both the specific and nonspecific DNA; however, the peak FRET efficiencies of the two structures are slightly but consistently different. The observed conformational heterogeneity highlights the potential structural changes required for CytR to bind variably spaced operator sequences.
Collapse
Affiliation(s)
- Shrutarshi Mitra
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Hiroyuki Oikawa
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Divya Rajendran
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Toshiyuki Kowada
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Shin Mizukami
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Satoshi Takahashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
A modular approach to map out the conformational landscapes of unbound intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:e2113572119. [PMID: 35658083 PMCID: PMC9191344 DOI: 10.1073/pnas.2113572119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceIntrinsically disordered proteins have the unique ability to morph in response to multiple partners and thereby process sophisticated inputs and outputs. It is, however, a mystery whether their response is passive, that is, entirely determined by the partner, or controlled via an internal, yet unknown, folding mechanism. Here we introduce an approach to examine this key question and demonstrate its potential by dissecting the conformational properties of the partially disordered protein NCBD and obtaining important clues about how it performs its biological function.
Collapse
|
6
|
Freitas FC, Maldonado M, Oliveira Junior AB, Onuchic JN, Oliveira RJD. Biotin-painted proteins have thermodynamic stability switched by kinetic folding routes. J Chem Phys 2022; 156:195101. [PMID: 35597640 DOI: 10.1063/5.0083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Michelli Maldonado
- Departamento de Matemática, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Antonio Bento Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
7
|
Gao M, Li P, Su Z, Huang Y. Topological frustration leading to backtracking in a coupled folding-binding process. Phys Chem Chem Phys 2022; 24:2630-2637. [PMID: 35029261 DOI: 10.1039/d1cp04927e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrinsically disordered proteins (IDPs) are abundant in all species. Their discovery challenges the traditional "sequence-structure-function" paradigm of protein science because IDPs play important roles in various biological processes without preformed folded structures. Bioinformatic analysis reveals that the intrinsically conformational disorder of IDPs as well as their conformational transition upon binding to their targets is encoded by their amino acid sequences. The rRNase domain of colicin E3 and the immunity protein Im3 are a pair of proteins involved in bacterial survival. While the N-terminal segment and the central segment of E3 make comparable intermolecular contacts with Im3 in the bound state, binding of E3 with Im3 is dominantly triggered by the central segment of E3. In this work, to further investigate the binding mechanism of disordered E3 with Im3, we performed systematic free energy and transition path analysis through coarse-grained molecular dynamics simulations. We observed backtracking of the N-terminal segment of E3 in the binding process, whose occurrence depends on salt concentration. Conformational analysis revealed that initial binding of the N-terminal segment of E3 to Im3 usually leads to misorientation of a central hairpin of E3 on Im3, which generates topological frustration and results in backtracking of the N-terminal segment. Our results not only provide deeper mechanistic insights into the coupled folding-binding process of the E3/Im3 complex, but also suggest that topological frustration could be present in the coupled folding-binding process of IDPs and play an important role in regulating the binding transition pathways.
Collapse
Affiliation(s)
- Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
8
|
Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms. Methods Mol Biol 2022; 2376:343-362. [PMID: 34845619 DOI: 10.1007/978-1-0716-1716-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined secondary or tertiary structures in solution but are found to be involved in a wide range of critical cellular processes that highlight their functional importance. IDPs usually undergo folding upon binding to their targets. Such binding coupled to folding behavior has widened our perspective on the protein structure-dynamics-function paradigm in molecular biology. However, characterizing the folding upon binding mechanism of IDPs experimentally remains quite challenging. Molecular simulations emerge as a potentially powerful tool that offers information complementary to experiments. Here we present a general computational framework for the molecular simulations of IDP folding upon binding processes that combines all-atom molecular dynamics (MD) and coarse-grained simulations. The classical all-atom molecular dynamics approach using GPU acceleration allows the researcher to explore the properties of the IDP conformational ensemble, whereas coarse-grained structure-based models implemented with parameters carefully calibrated to available experimental measurements can be used to simulate the entire folding upon binding process. We also discuss a set of tools for the analysis of MD trajectories and describe the details of the computational protocol to follow so that it can be adapted by the user to study any IDP in isolation and in complex with partners.
Collapse
|
9
|
Freitas FC, Ferreira PHB, Favaro DC, Oliveira RJD. Shedding Light on the Inhibitory Mechanisms of SARS-CoV-1/CoV-2 Spike Proteins by ACE2-Designed Peptides. J Chem Inf Model 2021; 61:1226-1243. [PMID: 33619962 PMCID: PMC7931628 DOI: 10.1021/acs.jcim.0c01320] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor that locks onto the surface spike protein of the 2002 SARS coronavirus (SARS-CoV-1) and of the novel, highly transmissible and deadly 2019 SARS-CoV-2, responsible for the COVID-19 pandemic. One strategy to avoid the virus infection is to design peptides by extracting the human ACE2 peptidase domain α1-helix, which would bind to the coronavirus surface protein, preventing the virus entry into the host cells. The natural α1-helix peptide has a stronger affinity to SARS-CoV-2 than to SARS-CoV-1. Another peptide was designed by joining α1 with the second portion of ACE2 that is far in the peptidase sequence yet grafted in the spike protein interface with ACE2. Previous studies have shown that, among several α1-based peptides, the hybrid peptidic scaffold is the one with the highest/strongest affinity for SARS-CoV-1, which is comparable to the full-length ACE2 affinity. In this work, binding and folding dynamics of the natural and designed ACE2-based peptides were simulated by the well-known coarse-grained structure-based model, with the computed thermodynamic quantities correlating with the experimental binding affinity data. Furthermore, theoretical kinetic analysis of native contact formation revealed the distinction between these processes in the presence of the different binding partners SARS-CoV-1 and SARS-CoV-2 spike domains. Additionally, our results indicate the existence of a two-state folding mechanism for the designed peptide en route to bind to the spike proteins, in contrast to a downhill mechanism for the natural α1-helix peptides. The presented low-cost simulation protocol demonstrated its efficiency in evaluating binding affinities and identifying the mechanisms involved in the neutralization of spike-ACE2 interaction by designed peptides. Finally, the protocol can be used as a computer-based screening of more potent designed peptides by experimentalists searching for new therapeutics against COVID-19.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| | - Denize Cristina Favaro
- Departamento de Química Orgânica,
Instituto de Química, Universidade Estadual de
Campinas, São Paulo, SP 13083-970, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica,
Departamento de Física, Instituto de Ciências Exatas, Naturais
e Educação, Universidade Federal do Triângulo
Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
10
|
Campos LA, Sadqi M, Muñoz V. Lessons about Protein Folding and Binding from Archetypal Folds. Acc Chem Res 2020; 53:2180-2188. [PMID: 32914959 DOI: 10.1021/acs.accounts.0c00322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The function of proteins as biological nanomachines relies on their ability to fold into complex 3D structures, bind selectively to partners, and undergo conformational changes on cue. The native functional structures, and the rates of interconversion between conformational states (folded-unfolded, bound-free), are all encoded in the physical chemistry of their amino acid sequence. However, despite extensive research over decades, this code has proven difficult to fully crack, in terms of both prediction and understanding the molecular mechanisms at play.Earlier work on single-domain proteins reported a commonality of slow rates (10-2-102 s-1) and simple behavior in both kinetic and thermodynamic unfolding experiments, which suggested the process was all-or-none and thereby analogous to a chemical reaction (e.g., A ⇄ B). In the absence of a first-principles pre-exponential factor for protein (un)folding dynamics, the rates could only be interpreted in relative terms, e.g., the changes induced by mutation, and hence, neither the height of nor the entropic contribution to the free energy barriers was known. The rates were also many orders of magnitude too slow for direct atomistic simulations, and the computational focus was on predicting rate changes induced by mutation via coarse grained simulations. However, even the effects of mutation proved to be strikingly homogeneous with all experimental data clustering at ∼1/3 of the free energy perturbation recovered on folding and ∼2/3 on unfolding.The implementation of ultrafast kinetic methods turned the field upside down because they allowed researchers to measure the time scales of elementary (un)folding motions, which set the pre-exponential factor for protein conformational transitions at ∼1 μs. In parallel, we and others set out to investigate the simplest possible protein structures capable of autonomous folding, which we defined as archetypal folds. The rationale was to recapitulate the hierarchical organization of protein structure, starting from the bottom up. The study of fold archetypes ended up opening new research avenues in protein (un)folding, but also making unexpected connections with the folding upon binding of intrinsically disordered proteins and suggesting their functioning as conformational rheostats.This Account describes our work on the kinetic, thermodynamic, mechanistic, and functional analysis of fold archetypes. We first discuss the kinetic studies, emphasizing their impact on our understanding of (un)folding rates, of barrierless (downhill) folding, and as benchmarks for atomistic simulations. We continue with the thermodynamic analysis, introducing the differential scanning calorimetry, multiprobe, and NMR approaches that we developed to dissect their gradual, minimally cooperative (un)folding transitions and to probe the underlying mechanisms with unprecedented detail. The last two sections cover single-molecule analyses and some recent, mostly computational, results on the exploration of possible biological and technological roles for the gradual conformational transitions of fold archetypes.
Collapse
Affiliation(s)
- Luis Alberto Campos
- Centro Nacional de Biotecnologı́a (CNB-CSIC), Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
- Unidad Asociada de Nanobiotecnologı́a IMDEA Nanociencia-CNB, 28049 Madrid, Spain
| | - Mourad Sadqi
- Department of Bioengineering, University of California, Merced, California 95343, United States
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California 95343, United States
| | - Victor Muñoz
- Department of Bioengineering, University of California, Merced, California 95343, United States
- NSF-CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California 95343, United States
- IMDEA Nanociencia, Ciudad Universitaria Cantoblanco, Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
11
|
Rubio AM, Rey A. Design of a structure-based model for protein folding from flexible conformations. Phys Chem Chem Phys 2019; 21:6544-6552. [DOI: 10.1039/c9cp00168a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We introduce a coarse-grained, structure-based model for protein folding that considers the flexibility of the native state in the definition of the model interactions.
Collapse
Affiliation(s)
- Ana M. Rubio
- Departamento de Química Física
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| | - Antonio Rey
- Departamento de Química Física
- Facultad de Ciencias Químicas
- Universidad Complutense de Madrid
- E-28040 Madrid
- Spain
| |
Collapse
|