1
|
Wood JL, Ghosh S, Houston ZH, Fletcher NL, Humphries J, Mardon K, Akhter DT, Tieu W, Ivashkevich A, Wheatcroft MP, Thurecht KJ, Codd R. A first-in-class dual-chelator theranostic agent designed for use with imaging-therapy radiometal pairs of different elements. Chem Sci 2024; 15:11748-11760. [PMID: 39092114 PMCID: PMC11290327 DOI: 10.1039/d4sc02851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 08/04/2024] Open
Abstract
A covalent adduct of DFOB and DOTA separated by a l-lysine residue (DFOB-l-Lys-N 6-DOTA) exhibited remarkable regioselective metal binding, with {1H}-13C NMR spectral shifts supporting Zr(iv) coordinating to the DFOB unit, and Lu(iii) coordinating to the DOTA unit. This first-in-class, dual-chelator theranostic design could enable the use of imaging-therapy radiometal pairs of different elements, such as 89Zr for positron emission tomography (PET) imaging and 177Lu for low-energy β--particle radiation therapy. DFOB-l-Lys-N 6-DOTA was elaborated with an amine-terminated polyethylene glycol extender unit (PEG4) to give DFOB-N 2-(PEG4)-l-Lys-N 6-DOTA (compound D2) to enable installation of a phenyl-isothiocyanate group (Ph-NCS) for subsequent monoclonal antibody (mAb) conjugation (mAb = HuJ591). D2-mAb was radiolabeled with 89Zr or 177Lu to produce [89Zr]Zr-D2-mAb or [177Lu]Lu-D2-mAb, respectively, and in vivo PET/CT imaging and in vivo/ex vivo biodistribution properties measured with the matched controls [89Zr]Zr-DFOB-mAb or [177Lu]Lu-DOTA-mAb in a murine LNCaP prostate tumour xenograft model. The 89Zr-immuno-PET imaging function of [89Zr]Zr-D2-mAb and [89Zr]Zr-DFOB-mAb showed no significant difference in tumour accumulation at 48 or 120 h post injection. [89Zr]Zr-D2-mAb and [177Lu]Lu-D2-mAb showed similar ex vivo biodistribution properties at 120 h post-injection. Tumour uptake of [177Lu]Lu-D2-mAb shown by SPECT/CT imaging at 48 h and 120 h post-injection supported the therapeutic function of D2, which was corroborated by similar therapeutic efficacy between [177Lu]Lu-D2-mAb and [177Lu]Lu-DOTA-mAb, both showing a sustained reduction in tumour volume (>80% over 65 d) compared to vehicle. The work identifies D2 as a trifunctional chelator that could expand capabilities in mixed-element radiometal theranostics to improve dosimetry and the clinical outcomes of molecularly targeted radiation.
Collapse
Affiliation(s)
- James L Wood
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H Houston
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - James Humphries
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Karine Mardon
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Dewan T Akhter
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - William Tieu
- Molecular Imaging and Therapy Research Unit (MITRU), South Australian Health and Medical Research Institute (SAHMRI) Adelaide Australia
| | | | | | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Rachel Codd
- The University of Sydney, School of Medical Sciences New South Wales 2006 Australia
| |
Collapse
|
2
|
Tosato M, Randhawa P, Asti M, Hemmingsen LBS, O'Shea CA, Thaveenrasingam P, Sauer SPA, Chen S, Graiff C, Menegazzo I, Baron M, Radchenko V, Ramogida CF, Di Marco V. Capturing Mercury-197m/g for Auger Electron Therapy and Cancer Theranostic with Sulfur-Containing Cyclen-Based Macrocycles. Inorg Chem 2024; 63:14241-14255. [PMID: 39024562 DOI: 10.1021/acs.inorgchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The interest in mercury radioisotopes, 197mHg (t1/2 = 23.8 h) and 197gHg (t1/2 = 64.14 h), has recently been reignited by the dual diagnostic and therapeutic nature of their nuclear decays. These isotopes emit γ-rays suitable for single photon emission computed tomography imaging and Auger electrons which can be exploited for treating small and metastatic tumors. However, the clinical utilization of 197m/gHg radionuclides is obstructed by the lack of chelators capable of securely binding them to tumor-seeking vectors. This work aims to address this challenge by investigating a series of chemically tailored macrocyclic platforms with sulfur-containing side arms, namely, 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), and 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S). 1,4,7,10-Tetrazacyclododecane-1,4,7,10-tetracetic acid (DOTA), the widest explored chelator in nuclear medicine, and the nonfunctionalized backbone 1,4,7,10-tetrazacyclododecane (cyclen) were considered as well to shed light on the role of the sulfanyl arms in the metal coordination. To this purpose, a comprehensive experimental and theoretical study encompassing aqueous coordination chemistry investigations through potentiometry, nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and density functional theory (DFT) calculations, as well as concentration- and temperature-dependent [197m/gHg]Hg2+ radiolabeling and in vitro stability assays in human serum was conducted. The obtained results reveal that the investigated chelators rapidly complex Hg2+ in aqueous media, forming extremely thermodynamically stable 1:1 metal-to-ligand complexes with superior stabilities compared to those of DOTA or cyclen. These complexes exhibited 6- to 8-fold coordination environments, with donors statically bound to the metal center, as evidenced by the presence of 1H-199Hg spin-spin coupling via NMR. A similar octacoordinated environment was also found for DOTA in both solution and solid state, but in this case, multiple slowly exchanging conformers were detected at ambient temperature. The sulfur-rich ligands quantitatively incorporate cyclotron-produced [197m/gHg]Hg2+ under relatively mild reaction conditions (pH = 7 and T = 50 °C), with the resulting radioactive complexes exhibiting decent stability in human serum (up to 75% after 24 h). By developing viable chelators and understanding the impact of structural modifications, our research addresses the scarcity of suitable chelating agents for 197m/gHg, offering promise for its future in vivo application as a theranostic Auger-emitter radiometal.
Collapse
Affiliation(s)
- Marianna Tosato
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Parmissa Randhawa
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Lars B S Hemmingsen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Catriona Ann O'Shea
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Shaohuang Chen
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
| | - Claudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Ileana Menegazzo
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Baron
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, BC V6T 1Z1 Vancouver, British Columbia, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, BC V5A 0A7 Burnaby, British Columbia, Canada
- Life Sciences Division, TRIUMF, BC V6T 2A3 Vancouver, British Columbia, Canada
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
3
|
Svítok A, Blahut J, Urbanovský P, Hermann P. Dynamics of Coordinated Phosphonate Group Directly Observed by 17O-NMR in Lanthanide(iii) Complexes of a Mono(ethyl phosphonate) DOTA Analogue. Chemistry 2024; 30:e202400970. [PMID: 38624256 DOI: 10.1002/chem.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Biological phosphates can coordinate metal ions and their complexes are common in living systems. Dynamics of mutual oxygen atom exchange in the tetrahedral group in complexes has not been investigated. Here, we present a direct experimental proof of exchange ("phosphonate rotation") in model Ln(III) complexes of monophosphonate H4dota analogue which alters phosphorus atom chirality of coordinated phosphonate monoester. Combination of macrocycle-based isomerism with P-based chirality leads to several diastereoisomers. (Non)-coordinated oxygen atoms were distinguished through 17O-labelled phosphonate group and their mutual exchange was followed by various NMR techniques and DFT calculations. The process is sterically demanding and occurs through bulky bidentate (κ2-PO2)- coordination and was observed only in twisted-square antiprism (TSA) diastereoisomer of large Ln(III) ions. Its energy demands increase for smaller Ln(III) ions (298ΔG≠(exp./DFT)=51.8/52.1 and 61.0/71.5 kJ mol-1 for La(III) and Eu(III), respectively). These results are helpful in design of such complexes as MRI CA and for protein paramagnetic NMR probes. It demonstrates usefulness of 17O NMR to study solution dynamics in complexes involving phosphorus acid derivatives and it may inspire use of this method to study dynamics of phosphoric acid derivatives (as e. g. phosphorus acid-based inhibitors of metalloenzymes) in different areas of chemistry.
Collapse
Affiliation(s)
- Adam Svítok
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Science, Flemingovo náměstí 2, 16000, Prague 6, Czech Republic
| | - Peter Urbanovský
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| | - Petr Hermann
- Department Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12843, Prague 2, Czech Republic
| |
Collapse
|
4
|
Nielsen LG, Andersen HOB, Kenwright AM, Platas-Iglesias C, So Rensen TJ. Using Chiral Auxiliaries to Mimic the Effect of Chiral Media on the Structure of Lanthanide(III) Complexes Common in Bioimaging and Diagnostic MRI. Inorg Chem 2024; 63:7560-7570. [PMID: 38610098 DOI: 10.1021/acs.inorgchem.3c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
[Ln·DOTA]- complexes and systems derived therefrom are commonly used in MRI and optical bioimaging. These lanthanide(III) complexes are chiral, and, in solution, they are present in four forms, with two sets of enantiomers, with the ligand donors arranged in either a square antiprismatic, SAP, or twisted square antiprismatic geometry, TSAP. This complicated speciation is found in laboratory samples. To investigate speciation in biological media, when Ln·DOTA-like complexes interact with chiral biomolecules, six Eu·DOTA-monoamide complexes were prepared and investigated by using 1D and 2D 1H NMR. To emulate the chirality of biological media, the amide pendant arm was modified with one or two chiral centers. It is known that a chiral center on the DOTA scaffold significantly influences the properties of the system. Here, it was found that chirality much further away from the metal center changes the available conformational space and that both chiral centers and amide cis/trans isomerism may need to be considered─a fact that, for the optically enriched materials, led to the conclusion that eight chemically different forms may need to be considered, instead of the four forms necessary for DOTA. The results reported here clearly demonstrate the diverse speciation that must be considered when correlating an observation to a structure of a lanthanide(III) complex.
Collapse
Affiliation(s)
- Lea Gundorff Nielsen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| | - Helene O B Andersen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| | - Alan M Kenwright
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Carlos Platas-Iglesias
- Centro Interdisciplinar de Química e Bioloxía (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | - Thomas Just So Rensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, Ko̷benhavn Ø DK2100, Denmark
| |
Collapse
|
5
|
Tosato M, Randhawa P, Lazzari L, McNeil BL, Dalla Tiezza M, Zanoni G, Mancin F, Orian L, Ramogida CF, Di Marco V. Tuning the Softness of the Pendant Arms and the Polyazamacrocyclic Backbone to Chelate the 203Pb/ 212Pb Theranostic Pair. Inorg Chem 2024; 63:1745-1758. [PMID: 38230993 PMCID: PMC10828988 DOI: 10.1021/acs.inorgchem.3c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
A series of macrocyclic ligands were considered for the chelation of Pb2+: 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO4S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (DO3S), 1,4,7-tris[2-(methylsulfanyl)ethyl]-10-acetamido-1,4,7,10-tetraazacyclododecane (DO3SAm), 1,7-bis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane-4,10-diacetic acid (DO2A2S), 1,5,9-tris[2-(methylsulfanyl)ethyl]-1,5,9-triazacyclododecane (TACD3S), 1,4,7,10-tetrakis[2-(methylsulfanyl)ethyl]-1,4,7,10-tetrazacyclotridecane (TRI4S), and 1,4,8,11-tetrakis[2-(methylsulfanyl)ethyl]-1,4,8,11-tetrazacyclotetradecane (TE4S). The equilibrium, the acid-mediated dissociation kinetics, and the structural properties of the Pb2+ complexes formed by these chelators were examined by UV-Visible and nuclear magnetic resonance (NMR) spectroscopies, combined with potentiometry and density functional theory (DFT) calculations. The obtained results indicated that DO4S, DO3S, DO3SAm, and DO2A2S were able to efficiently chelate Pb2+ and that the most suitable macrocyclic scaffold for Pb2+ is 1,4,7,10-tetrazacyclododecane. NMR spectroscopy gave insights into the solution structures of the Pb2+ complexes, and 1H-207Pb interactions confirmed the involvement of S and/or O donors in the metal coordination sphere. Highly fluxional solution behavior was discovered when Pb2+ was coordinated to symmetric ligands (i.e., DO4S and DO2A2S) while the introduction of structural asymmetry in DO3S and DO3SAm slowed down the intramolecular dynamics. The ligand ability to chelate [203Pb]Pb2+ under highly dilute reaction conditions was explored through radiolabeling experiments. While DO4S and DO3S possessed modest performance, DO3SAm and DO2A2S demonstrated high complexation efficiency under mild reaction conditions (pH = 7, 5 min reaction time). The [203Pb]Pb2+ complexes' integrity in human serum over 24 h was appreciably good for [203Pb][Pb(DO4S)]2+ (80 ± 5%) and excellent for [203Pb][Pb(DO3SAm)]2+ (93 ± 1%) and [203Pb][Pb(DO2A2S)] (94 ± 1%). These results reveal the promise of DO2A2S and DO3SAm as chelators in cutting-edge theranostic [203/212Pb]Pb2+ radiopharmaceuticals.
Collapse
Affiliation(s)
- Marianna Tosato
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
- Radiopharmaceutical
Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS Reggio Emilia, 42122 Reggio Emilia, Italy
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Parmissa Randhawa
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Luca Lazzari
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Brooke L. McNeil
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Marco Dalla Tiezza
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Giordano Zanoni
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Laura Orian
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Caterina F. Ramogida
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Life
Sciences Division, TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - Valerio Di Marco
- Department
of Chemical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Hamon N, Godec L, Jourdain E, Lucio-Martínez F, Platas-Iglesias C, Beyler M, Charbonnière LJ, Tripier R. Synthesis and Photophysical Properties of Lanthanide Pyridinylphosphonic Tacn and Pyclen Derivatives: From Mononuclear Complexes to Supramolecular Heteronuclear Assemblies. Inorg Chem 2023; 62:18940-18954. [PMID: 37935007 DOI: 10.1021/acs.inorgchem.3c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Synthetic methodologies were developed to achieve the preparation of ligands L1 and L2 consisting of tacn- and pyclen-based chelators decorated with pyridinylphosphonic pendant arms combined with ethylpicolinamide or acetate coordinating functions, respectively. Phosphonate functions have been selected for their high affinity toward Ln3+ ions compared to their carboxylated counterparts and for their steric hindrance that favors the formation of less-hydrated complexes. Thanks to regiospecific N-functionalization of the macrocyclic backbones, the two ligands were isolated with good yields and implicated in a comprehensive photophysical study for the complexation of Eu3+, Tb3+, and Yb3+. The coordination behavior of L1 and L2 with these cations has been first investigated by means of a combination of UV-vis absorption spectroscopy, steady-state and time-resolved luminescence spectroscopy, and 1H and 31P NMR titration experiments. Structural characterization in solution was assessed by NMR spectroscopy, corroborated by theoretical calculations. Spectroscopic characterization of the Ln3+ complexes of L1 and L2 was done in water and D2O and showed the effective sensitization of the lanthanide metal-centered emission spectra, each exhibiting typical lanthanide emission bands. The results obtained for the phosphonated ligands were compared with those reported previously for the corresponding carboxylated analogues.
Collapse
Affiliation(s)
- Nadège Hamon
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Léna Godec
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Elsa Jourdain
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Fátima Lucio-Martínez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, A Coruña 15008, Spain
| | - Maryline Beyler
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| | - Loïc J Charbonnière
- Equipe de Synthèse pour l'analyse, Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS/Université de Strasbourg, ECPM, 25 rue Becquerel, Strasbourg 67087, Cedex 2, France
| | - Raphaël Tripier
- Univ Brest, UMR CNRS 6521 CEMCA, 6 Avenue Victor Le Gorgeu, Brest 29200, France
| |
Collapse
|
7
|
Rajh T, Masson E, Latt KZ, Smith A, Brugh AM, Dandu N, Trainer D, Curtiss LA, Ngo AT, Hla SW. Light- and Chemical-Doping-Induced Magnetic Behavior of Eu Molecular Systems. Inorg Chem 2023; 62:12721-12729. [PMID: 37506323 DOI: 10.1021/acs.inorgchem.3c01154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Variable temperature electron paramagnetic resonance (VT-EPR) was used to investigate the role of the environment and oxidation states of several coordinated Eu compounds. We find that while Eu(III) chelating complexes are diamagnetic, simple chemical reduction results in the formation of paramagnetic species. In agreement with the distorted D3h symmetry of Eu molecular complexes investigated in this study, the EPR spectrum of reduced complexes showed axially symmetric signals (g⊥ = 2.001 and g∥ = 1.994) that were successfully simulated with two Eu isotopes with nuclear spin 5/2 (151Eu and 153Eu with 48% and 52% natural abundance, respectively) and nuclear g-factors 151Eu/153Eu = 2.27. Illumination of water-soluble complex Eu(dipic)3 at 4 K led to the ligand-to-metal charge transfer (LMCT) that resulted in the formation of Eu(II) in a rhombic environment (gx = 2.006, gy = 1.995, gz = 1.988). The existence of LMCT affects the luminescence of Eu(dipic)3, and pre-reduction of the complex to Eu(II)(dipic)3 reversibly reduces red luminescence with the appearance of a weak CT blue luminescence. Furthermore, encapsulation of a large portion of the dipic ligand with Cucurbit[7]uril, a pumpkin-shaped macrocycle, inhibited ligand-to-metal charge transfer, preventing the formation of Eu(II) upon illumination.
Collapse
Affiliation(s)
- Tijana Rajh
- Nanoscience and Technology Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, Illinois 60540, United States
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, Arizona 85281, United States
| | - Eric Masson
- Department of Chemistry, Ohio University, Athens, Ohio 45701, United States
| | - Kyaw Zin Latt
- Nanoscience and Technology Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, Illinois 60540, United States
| | - Ashton Smith
- Department of Chemistry, Ohio University, Athens, Ohio 45701, United States
| | - Alexander M Brugh
- School of Molecular Sciences, Arizona State University, 551 E University Dr, Tempe, Arizona 85281, United States
| | - Naveen Dandu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Daniel Trainer
- Nanoscience and Technology Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, Illinois 60540, United States
| | - Larry A Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anh T Ngo
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Saw-Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, Illinois 60540, United States
- Nanoscale & Quantum Phenomena Institute, and Department of Physics & Astronomy, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
8
|
Miao Q, Dekkers R, Gupta KBSS, Overhand M, Dasgupta R, Ubbink M. Rigidified and Hydrophilic DOTA-like Lanthanoid Ligands: Design, Synthesis, and Dynamic Properties. Inorg Chem 2023; 62:3776-3787. [PMID: 36802549 PMCID: PMC9996828 DOI: 10.1021/acs.inorgchem.2c03768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Limiting the dynamics of paramagnetic tags is crucial for the accuracy of the structural information derived from paramagnetic nuclear magnetic resonance (NMR) experiments. A hydrophilic rigid 2,2',2″,2‴-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA)-like lanthanoid complex was designed and synthesized following a strategy that allows the incorporation of two sets of two adjacent substituents. This resulted in a C2 symmetric hydrophilic and rigid macrocyclic ring, featuring four chiral hydroxyl-methylene substituents. NMR spectroscopy was used to investigate the conformational dynamics of the novel macrocycle upon complexation with europium and compared to DOTA and its derivatives. The twisted square antiprismatic and square antiprismatic conformers coexist, but the former is favored, which is different from DOTA. Two-dimensional 1H exchange spectroscopy shows that ring flipping of the cyclen-ring is suppressed due to the presence of the four chiral equatorial hydroxyl-methylene substituents at proximate positions. The reorientation of the pendant arms causes conformational exchange between two conformers. The reorientation of the coordination arms is slower when the ring flipping is suppressed. This indicates that these complexes are suitable scaffolds to develop rigid probes for paramagnetic NMR of proteins. Due to their hydrophilic nature, it is anticipated that they are less likely to cause protein precipitation than their more hydrophobic counterparts.
Collapse
Affiliation(s)
- Qing Miao
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - René Dekkers
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Karthick Babu Sai Sankar Gupta
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mark Overhand
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Rubin Dasgupta
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, Stockholm 17177, Sweden
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
9
|
Zapolotsky E, Pershina E, Babailov S. NMR estimation of the activation energy of conformational dynamics in the [Dy(DOTA)]− complex: Energetic manifestation of the gadolinium break. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Holzapfel M, Baldau T, Kerpa S, Guadalupi G, Qi B, Liu Y, Parak WJ, Maison W. Solution Structure and Relaxivity of Ln‐DOTXAZA Derivatives. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malte Holzapfel
- Fraunhofer Institute for Applied Polymer Research: Fraunhofer-Institut fur Angewandte Polymerforschung IAP Center for Applied Nanoscience GERMANY
| | - Torben Baldau
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | - Svenja Kerpa
- Universität Hamburg: Universitat Hamburg Department of Chemistry GERMANY
| | | | - Bing Qi
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Yang Liu
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang J. Parak
- Universität Hamburg: Universitat Hamburg Center for Hybrid Nanostructure GERMANY
| | - Wolfgang Maison
- University of Hamburg Chemistry Bundesstr. 45 20146 Hamburg GERMANY
| |
Collapse
|
11
|
Geng Y, Wu T, Han Q, Yang Y, Chen Z, Li X, Yin B, Zhou Y, Ling Y. Gadolinium-based contrast agents built of DO3A-pyridine scaffold: Precisely tuning carboxylate group for enhanced magnetic resonance imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Aldrich KE, Popov IA, Root HD, Batista ER, Greer SM, Kozimor SA, Lilley LM, Livshits MY, Mocko V, Janicke MT, Scott BL, Stein BW, Yang P. Synthesis, solid-state, solution, and theoretical characterization of an "in-cage" scandium-NOTA complex. Dalton Trans 2022; 51:9994-10005. [PMID: 35739082 DOI: 10.1039/d1dt03887g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing chelators that strongly and selectively bind rare-earth elements (Sc, Y, La, and lanthanides) represents a longstanding fundamental challenge in inorganic chemistry. Solving these challenges is becoming more important because of increasing use of rare-earth elements in numerous technologies, ranging from paramagnets to luminescent materials. Within this context, we interrogated the complexation chemistry of the scandium(III) (Sc3+) trication with the hexadentate 1,4,7-triazacyclononane-1,4,7-triacetic acid (H3NOTA) chelator. This H3NOTA chelator is often regarded as an underperformer for complexing Sc3+. A common assumption is that metalation does not fully encapsulate Sc3+ within the NOTA3- macrocycle, leaving Sc3+ on the periphery of the chelate and susceptible to demetalation. Herein, we developed a synthetic approach that contradicted those assumptions. We confirmed that our procedure forced Sc3+ into the NOTA3- binding pocket by using single crystal X-ray diffraction to determine the Na[Sc(NOTA)(OOCCH3)] structure. Density functional theory (DFT) and 45Sc nuclear magnetic resonance (NMR) spectroscopy showed Sc3+ encapsulation was retained when the crystals were dissolved. Solution-phase and DFT studies revealed that [Sc(NOTA)(OOCCH3)]1- could accommodate an additional H2O capping ligand. Thermodynamic properties associated with the Sc-OOCCH3 and Sc-H2O capping ligand interactions demonstrated that these capping ligands occupied critical roles in stabilizing the [Sc(NOTA)] chelation complex.
Collapse
Affiliation(s)
| | - Ivan A Popov
- Los Alamos National Laboratory, Los Alamos, NM, USA. .,Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, USA
| | | | | | | | | | | | | | | | | | - Brian L Scott
- Los Alamos National Laboratory, Los Alamos, NM, USA.
| | | | - Ping Yang
- Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
13
|
Storm Thomsen M, Parsons S, Sørensen TJ. Invisible strings. The first single crystal of the cTSAP form of [Eu(DOTA)(H 2O)] − has an electronic structure similar to one of the reported cSAP forms. Dalton Trans 2022; 51:15725-15733. [DOI: 10.1039/d2dt02633c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counter ions can be used to tune the solid state structure of Eu·DOTA between the cSAP and cTSAP form, but the electronic properties does not match the observations seen in solution.
Collapse
Affiliation(s)
- Maria Storm Thomsen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Simon Parsons
- School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3FJ, Scotland, UK
| | - Thomas Just Sørensen
- Nano-Science Center & Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
14
|
De Souza LA, Da Silva Ferreira L, Gomes EM, P. O. Silva J, Belchior JC, Marques LF. Structure and stability of Eu3+ complexes derivatives from non-steroidal anti-inflammatory drug ibuprofen through a DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Zapolotsky EN, Qu Y, Babailov SP. Lanthanide complexes with polyaminopolycarboxylates as prospective NMR/MRI diagnostic probes: peculiarities of molecular structure, dynamics and paramagnetic properties. J INCL PHENOM MACRO 2021; 102:1-33. [PMID: 34785985 PMCID: PMC8582344 DOI: 10.1007/s10847-021-01112-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
The paramagnetic lanthanide complexes with polyaminopolycarboxylate (PAPC) ligands attract considerable attention from the standpoint of potential applications thereof as relaxation agents used in medical magnetic resonance imaging (MRI) and in luminescent materials, as well as owing to promising use thereof as paramagnetic labels for studying the properties of biopolymers since they exhibit thermodynamic stability, good solubility in aqueous media and moderate toxicity. For the last decades, the NMR methods have been used to determine the physical and chemical properties of paramagnetic Ln compounds. The studies concerning paramagnetic NMR lanthanide-induced shifts (LISs) in dissolved Ln complexes, as well as the analysis of band shape as a function of temperature make it possible to obtain valuable information on the structure, intra- and intermolecular dynamics and paramagnetic properties thereof. This review is devoted solely to the following features: firstly, the processes of intramolecular dynamics of lanthanide complexes with polyamino-polycarboxylate ligands such as DOTA, EDTA and DTPA and their derivatives studied by NMR; secondly, the LISs of lanthanide complexes with EDTA, DOTA, DTPA and some of their derivatives depending on temperature and pH. Moreover, in this review, for the first time, the dependence of the activation energy of molecular dynamics in complexes with polydentate ligands on the atomic number of the lanthanide cation is analyzed and a monotonic change in energy is detected, which is due to the effect of lanthanide contraction. It should be noted that this phenomenon is quite general and may also appear in the future in many other series of lanthanide complexes with both other multidentate ligands and with bidentate and monodentate ligands. In the future, it is possible to predict the dependence of the properties of certain lanthanide complexes on the ionic radius of the lanthanide cation based on the approaches presented in the review. In this review, we have also presented the dynamic NMR as the main research method widely used to analyze the processes of molecular dynamics, and the structural studies based on the NMR relaxation spectroscopy and LIS analysis.
Collapse
Affiliation(s)
- Eugeny N. Zapolotsky
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 3, Novosibirsk, Russia 630090
| | - Yanyang Qu
- Institute of Chemical Materials, CAEP, P. O. Box 919-311, Mianyang, 621900 Sichun China
| | - Sergey P. Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Av. Lavrentyev 3, Novosibirsk, Russia 630090
| |
Collapse
|
16
|
Lee YS, Mou Z, Opina ACL, Vasalatiy O. Origin of the Isomer Stability of Polymethylated DOTA Chelates Complexed with Ln 3+ ions. Eur J Inorg Chem 2021; 2021:1428-1440. [PMID: 36591318 PMCID: PMC9802879 DOI: 10.1002/ejic.202100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelates that give only a single isomer in solution when complexed with lanthanide (Ln3+) ions is of value for studying protein dynamics and interactions via NMR. Herein, we have investigated the geometries, energetics, and electrostatic potentials of Lu complexed with DOTA (1), ring methylated M4DOTA (2), and arm methylated R-DOTMA (3) and S-DOTMA (4), as well as, both ring and arm methylated 4S-4S-M4DOTMA (5) and 4S-4R-M4DOTMA (6) at the level of M06-L/6-31+G(d)-SDD, to elucidate the origin of the isomer stability. These analyses indicate that the electrostatic repulsion between the arm methyl and the neighboring carboxylate significantly destabilizes the square antiprism (SAP) isomer of Lu-5 and the twisted square antiprism (TSAP) isomer of Lu-6, while the steric repulsion between the ring and arm methyl groups attenuates the stability of both TSAP of Lu-5 and SAP of Lu-6. To rationalize the variable temperature proton NMR spectra, the energy barriers for the inter-conversion in Lu-5 and Lu-6 via arm rotation were also calculated. The modulation of the stability and rigidity of Ln complexes via a modification of DOTA is also discussed. Our investigation will aid to design better chelates for the Ln3+ ions for its use in molecular medicine.
Collapse
Affiliation(s)
- Yong-Sok Lee
- Dr. Yong-Sok Lee, Dr. Zhongyu Mou Center for Molecular Modeling, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States,Present address: Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Zhongyu Mou
- Dr. Yong-Sok Lee, Dr. Zhongyu Mou Center for Molecular Modeling, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, United States,Present address: Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ana Christina L. Opina
- Dr. Ana Christina L. Opina, Dr. Olga Vasalatiy Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, United States
| | - Olga Vasalatiy
- Dr. Ana Christina L. Opina, Dr. Olga Vasalatiy Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD 20850, United States
| |
Collapse
|
17
|
Tm-DOTA as responsive relaxation and shift probe for NMR local temperature monitoring at high magnetic fields. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Swartjes A, White PB, Lammertink M, Elemans JAAW, Nolte RJM. Host-Guest Exchange of Viologen Guests in Porphyrin Cage Compounds as Studied by Selective Exchange Spectroscopy (1D EXSY) NMR. Angew Chem Int Ed Engl 2021; 60:1254-1262. [PMID: 33016567 PMCID: PMC7839762 DOI: 10.1002/anie.202010335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Indexed: 12/18/2022]
Abstract
Dynamics in complexes of porphyrin cage compounds and viologen-derived guest molecules are investigated by selective exchange NMR spectroscopy (1D EXSY). Exchange rates were found to be independent of excess guest concentration, revealing a dissociative exchange mechanism, which is accompanied by negative activation entropies, indicating significant reorganization of the host-guest complex during dissociation. Nonsymmetric viologen guests with bulky head groups had more unidirectional binding and slower exchange rates than guests with less-bulky head groups. Thermodynamic and kinetic studies revealed that the exchange process is primarily driven by the thermodynamics of binding and that guest binding can be influenced by introducing steric and electronic groups on the host . Exchange studies with guests bearing a polymer chain revealed that both slippage and full dissociation takes place and the rate constants for both processes were determined. The slippage rate constant revealed that for smaller guests exchange takes place nearly exclusively under thermodynamic control.
Collapse
Affiliation(s)
- Anne Swartjes
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Paul B White
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Marijn Lammertink
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| | - Roeland J M Nolte
- Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525, AJ, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Biswas A, Mallik BS. Conformational dynamics of aqueous hydrogen peroxide from first principles molecular dynamics simulations. Phys Chem Chem Phys 2020; 22:28286-28296. [PMID: 33295373 DOI: 10.1039/d0cp05451h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We performed first principles molecular dynamics simulations of a relatively dilute aqueous hydrogen peroxide (H2O2) solution to examine its structural alterations and relevant dynamics upon solvation. The internal rotation of the OH groups about the O-O bond facilitates the flexible structure of H2O2. Structural calculations reveal dihedral angle fluctuations in the aqueous solution. Water molecules make stronger hydrogen bonds through the hydrogen atom of the solute than the oxygen atom leading to distinct hydrogen bonding configurations inside the first solvation shell. Time-dependent dihedral angle alterations result in conformational changes and the normalized dihedral angle distribution plot displays characteristic peaks at ∼100-120° and ∼230°, illustrating various conformational states. Within the simulation time, flexibility-induced interconversion of hydrogen peroxide gives rise to several cisoid and transoid conformers. In this study, we examine the relative population of the associated conformational states and the lifetime of the cisoid and transoid conformers from the torsion angle variations. We also determine the free energy landscape of the rotational isomerization process in H2O2 and explore two distinct energy barriers during such interconversion.
Collapse
Affiliation(s)
- Aritri Biswas
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy - 502285, Telangana, India.
| | | |
Collapse
|
20
|
Swartjes A, White PB, Lammertink M, Elemans JAAW, Nolte RJM. Host–Guest Exchange of Viologen Guests in Porphyrin Cage Compounds as Studied by Selective Exchange Spectroscopy (1D EXSY) NMR. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anne Swartjes
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Paul B. White
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Marijn Lammertink
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Johannes A. A. W. Elemans
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Roeland J. M. Nolte
- Radboud University Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
21
|
Rodríguez-Rodríguez A, Zaiss M, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1823167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Moritz Zaiss
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Lab of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science (CAS), Shanghai, P.R. China
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
22
|
Morse SV, Boltersdorf T, Harriss BI, Chan TG, Baxan N, Jung HS, Pouliopoulos AN, Choi JJ, Long NJ. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Am J Cancer Res 2020; 10:2659-2674. [PMID: 32194827 PMCID: PMC7052893 DOI: 10.7150/thno.42665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Gadolinium-based magnetic resonance imaging contrast agents can provide information regarding neuronal function, provided that these agents can cross the neuronal cell membrane. Such contrast agents are normally restricted to extracellular domains, however, by attaching cationic fluorescent dyes, they can be made cell-permeable and allow for both optical and magnetic resonance detection. To reach neurons, these agents also need to cross the blood-brain barrier. Focused ultrasound combined with microbubbles has been shown to enhance the permeability of this barrier, allowing molecules into the brain non-invasively, locally and transiently. The goal of this study was to investigate whether combining fluorescent rhodamine with a gadolinium complex would form a dual-modal contrast agent that could label neurons in vivo when delivered to the mouse brain with focused ultrasound and microbubbles. Methods: Gadolinium complexes were combined with a fluorescent, cationic rhodamine unit to form probes with fluorescence and relaxivity properties suitable for in vivo applications. The left hemisphere of female C57bl/6 mice (8-10 weeks old; 19.07 ± 1.56 g; n = 16) was treated with ultrasound (centre frequency: 1 MHz, peak-negative pressure: 0.35 MPa, pulse length: 10 ms, repetition frequency: 0.5 Hz) while intravenously injecting SonoVue microbubbles and either the 1 kDa Gd(rhodamine-pip-DO3A) complex or a conventionally-used lysine-fixable Texas Red® 3 kDa dextran. The opposite right hemisphere was used as a non-treated control region. Brains were then extracted and either sectioned and imaged via fluorescence or confocal microscopy or imaged using a 9.4 T magnetic resonance imaging scanner. Brain slices were stained for neurons (NeuN), microglia (Iba1) and astrocytes (GFAP) to investigate the cellular localization of the probes. Results: Rhodamine fluorescence was detected in the left hemisphere of all ultrasound treated mice, while none was detected in the right control hemisphere. Cellular uptake of Gd(rhodamine-pip-DO3A) was observed in all the treated regions with a uniform distribution (coefficient of variation = 0.4 ± 0.05). Uptake was confirmed within neurons, whereas the probe did not co-localize with microglia and astrocytes. Compared to the dextran molecule, Gd(rhodamine-pip-DO3A) distributed more homogeneously and was less concentrated around blood vessels. Furthermore, the dextran molecule was found to accumulate unselectively in microglia as well as neurons, whereas our probe was only taken up by neurons. Gd(rhodamine-pip-DO3A) was detected via magnetic resonance imaging ex vivo in similar regions to where fluorescence was detected. Conclusion: We have introduced a method to image neurons with a dual-modal imaging agent delivered non-invasively and locally to the brain using focused ultrasound and microbubbles. When delivered to the mouse brain, the agent distributed homogeneously and was only uptaken by neurons; in contrast, conventionally used dextran distributed heterogeneously and was uptaken by microglia as well as neurons. This result indicates that our probe labels neurons without microglial involvement and in addition the probe was found to be detectable via both ex vivo MRI and fluorescence. Labeling neurons with such dual-modal agents could facilitate the study of neuronal morphology and physiology using the advantages of both imaging modalities.
Collapse
|
23
|
Boltersdorf T, Ansari J, Senchenkova EY, Jiang L, White AJP, Coogan M, Gavins FNE, Long NJ. Development, characterisation and in vitro evaluation of lanthanide-based FPR2/ALX-targeted imaging probes. Dalton Trans 2019; 48:16764-16775. [PMID: 31674608 DOI: 10.1039/c9dt03520f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the design, preparation and characterisation of three small-molecule, Formyl Peptide Receptor (FPR)-targeted lanthanide complexes (Tb·14, Eu·14 and Gd·14). Long-lived, metal-based emission was observed from the terbium complex (τH2O = 1.9 ms), whereas only negligible lanthanide signals were detected in the europium analogue. Ligand-centred emission was investigated using Gd·14 at room temperature and 77 K, leading to the postulation that metal emission may be sensitised via a ligand-based charge transfer state of the targeting Quin C1 unit. Comparatively high longitudinal relaxivity values (r1) for octadentate metal complexes of Gd·14 were determined (6.9 mM-1 s-1 at 400 MHz and 294 K), which could be a result of a relative increase in twisted square antiprism (TSAP) isomer prevalence compared to typical DOTA constructs (as evidenced by NMR spectroscopy). In vitro validation of concentration responses of Tb·14via three key neutrophil functional assays demonstrated that the inflammatory responses of neutrophils (i.e. chemotaxis, transmigration and granular release) remained unchanged in the presence of specific concentrations of the compound. Using a time-resolved microscopy set-up we were able to observe binding of the Tb·14 probe to stimulated human neutrophils around the cell periphery, while in the same experiment with un-activated neutrophils, no metal-based signals were detected. Our results demonstrate the utility of Tb·14 for time-resolved microscopy with lifetimes several orders of magnitude longer than autofluorescent signals and a preferential uptake in stimulated neutrophils.
Collapse
Affiliation(s)
- Tamara Boltersdorf
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City, London, W12 0BZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Reinhart ED, Jordan RF. Template-Free Synthesis of a Macrocyclic Bis(pyridine-dienamine) Proligand and Metal Complexes of Its Bis(pyridine-diimine) and Bis(pyridine-dienamido) Forms. Inorg Chem 2019; 58:15466-15478. [PMID: 31675222 DOI: 10.1021/acs.inorgchem.9b02539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the template-free synthesis of the bis(pyridine-dienamine) proligand [4,5-(m-xylylenediamine)NH-C═(CH)(9-butyl-octahydroacridine)]2 (2'), a variant of Burrows's macrocyclic bis(pyridine-diimine) (bis-PDI) ligand [2,6-(m-xylylenediamine)N═C(py)]2 (A), using octahydroacridine as the ligand backbone. The octahydroacridine backbone favors macrocyclization by constraining the PDI units in the (s-cis)2 conformation. The template-free synthesis of 2' enables facile access to a wide array of bis-PDI and bis(pyridine-dienamido) (bis-PDE) metal complexes. Five-coordinate binuclear bis-PDI (2)M2Cl4 complexes {2 = [4,5-(m-xylylenediamine)N═C(9-butyl-octahydroacridine)]2; M = Zn, Co, or Fe} and a four-coordinate bis-PDI [(2)Pd2Br2][B(3,5-(CF3)2-Ph)4]2 complex were synthesized and characterized. (2)Zn2Cl4 undergoes macrocyclic ring inversion on the nuclear magnetic resonance (NMR) time scale with a free energy barrier ΔG⧧ of 15.5(3) kcal/mol at 295 K. In contrast, (2)Fe2Cl4 and (2)Co2Cl4 undergo slow ring inversion on the NMR chemical shift time scale at 295 K. The amine elimination reaction of 2' with Zr(NMe2)4 yields the bis-PDE complex (2'-4H)Zr2(NMe2)4, which was alkylated with AlMe3 and Al(CH2SiMe3)3 to generate (2'-4H)Zr2Me4 and (2'-4H)Zr2(CH2SiMe3)2(NMe2)2, respectively.
Collapse
Affiliation(s)
- Erik D Reinhart
- Department of Chemistry , The University of Chicago , 5735 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Richard F Jordan
- Department of Chemistry , The University of Chicago , 5735 South Ellis Avenue , Chicago , Illinois 60637 , United States
| |
Collapse
|
25
|
Babailov SP, Zapolotsky EN, Basova TV. Holmium-DOTA as a responsive relaxation paramagnetic probe for NMR/MRI control of local temperature at high magnetic fields. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Kent GT, Wu G, Hayton TW. Synthesis and Crystallographic Characterization of the Tetravalent Actinide-DOTA Complexes [AnIV(κ8-DOTA)(DMSO)] (An = Th, U). Inorg Chem 2019; 58:8253-8256. [DOI: 10.1021/acs.inorgchem.9b00736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
27
|
Urbanovský P, Kotek J, Carniato F, Botta M, Hermann P. Lanthanide Complexes of DO3A-(Dibenzylamino)methylphosphinate: Effect of Protonation of the Dibenzylamino Group on the Water-Exchange Rate and the Binding of Human Serum Albumin. Inorg Chem 2019; 58:5196-5210. [PMID: 30942072 DOI: 10.1021/acs.inorgchem.9b00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protonation of a distant, noncoordinated group of metal-based magnetic resonance imaging contrast agents potentially changes their relaxivity. The effect of a positive charge of the drug on the human serum albumin (HSA)-drug interaction remains poorly understood as well. Accordingly, a (dibenzylamino)methylphosphinate derivative of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was efficiently synthesized using pyridine as the solvent for a Mannich-type reaction of tBu3DO3A, formaldehyde, and Bn2NCH2PO2H2 ethyl ester. The ligand protonation and metal ion (Gd3+, Cu2+, and Zn2+) stability constants were similar to those of the parent DOTA, whereas the basicity of the side-chain amino group of the complexes (log KA = 5.8) was 1 order of magnitude lower than that of the free ligand (log KA = 6.8). The presence of one bound water molecule in both deprotonated and protonated forms of the gadolinium(III) complex was deduced from the solid-state X-ray diffraction data [gadolinium(III) and dysprosium(III)], from the square antiprism/twisted square antiprism (SA/TSA) isomer ratio along the lanthanide series, from the fluorescence data of the europium(III) complex, and from the 17O NMR measurements of the dysprosium(III) and gadolinium(III) complexes. In the gadolinium(III) complex with the deprotonated amino group, water exchange is extremely fast (τM = 6 ns at 25 °C), most likely thanks to the high abundance of the TSA isomer and to the presence of a proximate protonable group, which assists the water-exchange process. The interaction between lanthanide(III) complexes and HSA is pH-dependent, and the deprotonated form is bound much more efficaciously (∼13% and ∼70% bound complex at pH = 4 and 7, respectively). The relaxivities of the complex and its HSA adduct are also pH-dependent, and the latter is approximately 2-3 times increased at pH = 4-7. The relaxivity for the supramolecular HSA-complex adduct ( r1b) is as high as 52 mM-1 s-1 at neutral pH (at 20 MHz and 25 °C). The findings of this study stand as a proof-of-concept, showing the ability to manipulate an albumin-drug interaction, and thus the blood pool residence time of the drug, by introducing a positive charge in a side-chain amino group.
Collapse
Affiliation(s)
- Peter Urbanovský
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| | - Jan Kotek
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica , Università del Piemonte Orientale "A. Avogadro" , Viale T. Michel 11 , 15121 Alessandria , Italy
| | - Petr Hermann
- Department of Inorganic Chemistry , Universita Karlova (Charles University) , Hlavova 2030 , 12843 Prague 2 , Czech Republic
| |
Collapse
|
28
|
Two types of conformational dynamics and thermo-sensor properties of praseodymium-DOTA by 1H/13C NMR. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
29
|
Modeling intramolecular energy transfer in lanthanide chelates: A critical review and recent advances. INCLUDING ACTINIDES 2019. [DOI: 10.1016/bs.hpcre.2019.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Joss D, Walliser RM, Zimmermann K, Häussinger D. Conformationally locked lanthanide chelating tags for convenient pseudocontact shift protein nuclear magnetic resonance spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 72:29-38. [PMID: 30117038 DOI: 10.1007/s10858-018-0203-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Pseudocontact shifts (PCS) generated by lanthanide chelating tags yield valuable restraints for investigating protein structures, dynamics and interactions in solution. In this work, dysprosium-, thulium- and terbium-complexes of eight-fold methylated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid tags [DOTA-M8-(4R4S)-SSPy] are presented that induce large pseudocontact shifts up to 5.5 ppm and adopt exclusively the square antiprismatic conformation. This is in contrast to our earlier findings on complexes of the stereoisomeric DOTA-M8-(8S)-SSPy, where significant amounts of the twisted square antiprismatic conformer for the Dy tag were observed. The Dy-, Tm-, Tb- and Lu-complexes of DOTA-M8-(4R4S)-SSPy were conjugated to ubiquitin S57C and selectively 15N leucine labeled human carbonic anhydrase II S50C, resulting in only one set of signals. Furthermore, we investigated the conformation of the thulium- and dysprosium-complexes in vacuo and with implicit water solvent using density functional theory calculations. The calculated energy differences between the two different conformations (7.0-50.5 kJ/mol) and experimental evidence from the corresponding ytterbium- and yttrium-complexes clearly suggest a SAP [Λ(δδδδ)] geometry for the complexes presented in this study. The lanthanide chelating tag studied in this work offer insights into the solution structure of proteins by inducing strong pseudocontact shifts, show different tensor properties compared to its predecessor, enables a convenient assignment procedure, is accessed by a more economic synthesis than its predecessor and constitutes a highly promising starting point for further developments of lanthanide chelating tags.
Collapse
Affiliation(s)
- Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Roché M Walliser
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Kaspar Zimmermann
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.
| |
Collapse
|