1
|
Kleine A, Mankel C, Hainthaler A, Wächtler M, Dietzek-Ivanšić B, Schubert US, Jäger M. From Molecular to Polymeric Donors: Prolonged Charge Separation in Modular Photoredox-Active Ru(II) Polypyridyl-Type Triads. Inorg Chem 2024; 63:23233-23247. [PMID: 39582166 PMCID: PMC11632771 DOI: 10.1021/acs.inorgchem.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
In this contribution, the divergent modular synthesis of photoredox-active dyads, triads and a tetrad descending from one ligand precursor is presented by combining "chemistry-on-the-ligand", stepwise complexation and "chemistry-on-the-complex" with minimal synthetic efforts. In the final step, Pd-mediated borylation and subsequent Suzuki-Miyaura cross-coupling was employed to introduce the different (multi)donor moieties at the preassembled P-A dyad subunit. The (spectro-)electrochemical data revealed preserved redox properties of the subunits and minimal driving force for oxidative quenching by the naphthalene diimide-based (NDI) acceptor and, thus, high-energy charge separated (CS) states. Time-resolved transient absorption and emission data revealed the formation of long-lived CS states in the polymer-based triads, i.e., the CS lifetime is extended by 2 orders of magnitude in comparison to the molecular triad. The long-lived CS state (13.2 μs) of the conjugated polycarbazole (Carbn) multidonor demonstrates that the rational modular design and efficient synthesis of advanced photoredox-active assemblies can be readily achieved by late-stage diversification utilizing the "chemistry-on-the-complex" approach.
Collapse
Affiliation(s)
- Alexander Kleine
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Charlotte Mankel
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - Andrea Hainthaler
- Institute
for Physical Chemistry (IPC), Friedrich
Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Maria Wächtler
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Ger-many
- Chemistry
Department and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 46, 67663 Kai-serslautern, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute
for Physical Chemistry (IPC), Friedrich
Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Research
Department Functional Interfaces, Leibniz
Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Ger-many
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Michael Jäger
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
2
|
Kleine A, Schubert US, Jäger M. Exploiting Orthogonal C-C Cross-Coupling Reactions for Chemistry-on-the-Complex: Modular Assembly of 2,6-Di(quinolin-8-yl)pyridine Ruthenium(II) Photosensitizer Triads. Inorg Chem 2024; 63:4053-4062. [PMID: 38373324 PMCID: PMC10915800 DOI: 10.1021/acs.inorgchem.3c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
In this work, we present a concise modular assembly strategy using one universal heteroleptic 2,6-di(quinolin-8-yl)pyridine-based ruthenium(II) complex as a starting building block. Extending the concept from established ligand modifications and subsequent complexation (classical route), the later appearing chemistry-on-the-complex methodology was used for late-stage syntheses, i.e., assembling discrete building blocks to molecular architectures (here: dyad and triads). We focused on Suzuki-Miyaura and Sonogashira cross-couplings as two of the best-known C-C bond forming reactions. Both were performed on one building block complex bearing a bromine and TIPS-protected alkyne for functional group interconversion (bromine to TMS-protected alkyne, a benzyl azide, or a boronic acid pinacol ester moiety with ≥95% isolated yield and simple purification) as well as building block assemblies using both a triarylamine-based donor and a naphthalene diimide-based acceptor in up to 86% isolated yield. Additionally, the developed purification via automated flash chromatography is simple compared to tedious manual chromatography for ruthenium(II)-based substrates in the classical route. Based on the preliminary characterization by steady-state spectroscopy, the observed emission quenching in the triad (55%) serves as an entry to rationally optimize the modular units via chemistry-on-the-complex to elucidate energy and electron transfer.
Collapse
Affiliation(s)
- Alexander Kleine
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Michael Jäger
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldstr. 10, 07743 Jena, Germany
- Center
for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
3
|
Bürgin T, Ogawa T, Wenger OS. Better Covalent Connection in a Molecular Triad Enables More Efficient Photochemical Energy Storage. Inorg Chem 2023; 62:13597-13607. [PMID: 37562775 PMCID: PMC10445269 DOI: 10.1021/acs.inorgchem.3c02008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Indexed: 08/12/2023]
Abstract
Numerous studies have explored the kinetics of light-induced charge separation and thermal charge recombination in donor-acceptor compounds, but quantum efficiencies have rarely been investigated. Here, we report on two essentially isomeric molecular triads, both comprising a π-extended tetrathiafulvalene (ExTTF) donor, a ruthenium(II)-based photosensitizer, and a naphthalene diimide (NDI) acceptor. The key difference between the two triads is how the NDI acceptor is connected. Linkage at the NDI core provides stronger electronic coupling to the other molecular components than connection via the nitrogen atoms of NDI. This change in molecular connectivity is expected to accelerate both energy-storing charge separation and energy-wasting charge recombination processes, but it is not a priori clear how this will affect the triad's ability to store photochemical energy; any gain resulting from faster charge separation could potentially be (over)compensated by losses through accelerated charge recombination. The new key insight emerging from our study is that the quantum yield for the formation of a long-lived charge-separated state increases by a factor of 5 when going from nitrogen- to core-connected NDI, providing the important proof of concept that better molecular connectivity indeed enables more efficient photochemical energy storage. The physical origin of this behavior seems to root in different orbital connectivity pathways for charge separation and charge recombination, as well as in differences in the relevant orbital interactions depending on NDI connection. Our work provides guidelines for how to discriminate between energy-storing and energy-wasting electron transfer reactions in order to improve the quantum yields for photochemical energy storage and solar energy conversion.
Collapse
Affiliation(s)
- Tobias
H. Bürgin
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| | - Tomohiro Ogawa
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
- Graduate
School of Science and Engineering, University
of Toyama, Toyama 930-8555, Japan
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, Basel 4056, Switzerland
| |
Collapse
|
4
|
Photoinduced electron transfer in triazole-bridged donor-acceptor dyads – A critical perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Yousuf I, Bashir M, Arjmand F, Tabassum S. Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coord Chem Rev 2021; 445:214104. [DOI: 10.1016/j.ccr.2021.214104] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
7
|
Smithen DA, Monro S, Pinto M, Roque J, Diaz-Rodriguez RM, Yin H, Cameron CG, Thompson A, McFarland SA. Bis[pyrrolyl Ru(ii)] triads: a new class of photosensitizers for metal-organic photodynamic therapy. Chem Sci 2020; 11:12047-12069. [PMID: 33738086 PMCID: PMC7953431 DOI: 10.1039/d0sc04500d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
A new family of ten dinuclear Ru(ii) complexes based on the bis[pyrrolyl Ru(ii)] triad scaffold, where two Ru(bpy)2 centers are separated by a variety of organic linkers, was prepared to evaluate the influence of the organic chromophore on the spectroscopic and in vitro photodynamic therapy (PDT) properties of the compounds. The bis[pyrrolyl Ru(ii)] triads absorbed strongly throughout the visible region, with several members having molar extinction coefficients (ε) ≥ 104 at 600-620 nm and longer. Phosphorescence quantum yields (Φ p) were generally less than 0.1% and in some cases undetectable. The singlet oxygen quantum yields (Φ Δ) ranged from 5% to 77% and generally correlated with their photocytotoxicities toward human leukemia (HL-60) cells regardless of the wavelength of light used. Dark cytotoxicities varied ten-fold, with EC50 values in the range of 10-100 μM and phototherapeutic indices (PIs) as large as 5400 and 260 with broadband visible (28 J cm-2, 7.8 mW cm-2) and 625 nm red (100 J cm-2, 42 mW cm-2) light, respectively. The bis[pyrrolyl Ru(ii)] triad with a pyrenyl linker (5h) was especially potent, with an EC50 value of 1 nM and PI > 27 000 with visible light and subnanomolar activity with 625 nm light (100 J cm-2, 28 mW cm-2). The lead compound 5h was also tested in a tumor spheroid assay using the HL60 cell line and exhibited greater photocytotoxicity in this more resistant model (EC50 = 60 nM and PI > 1200 with 625 nm light) despite a lower dark cytotoxicity. The in vitro PDT effects of 5h extended to bacteria, where submicromolar EC50 values and PIs >300 against S. mutans and S. aureus were obtained with visible light. This activity was attenuated with 625 nm red light, but PIs were still near 50. The ligand-localized 3ππ* state contributed by the pyrenyl linker of 5h likely plays a key role in its phototoxic effects toward cancer cells and bacteria.
Collapse
Affiliation(s)
- Deborah A Smithen
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Susan Monro
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Mitch Pinto
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - John Roque
- Department of Chemistry and Biochemistry , The University of North Carolina at Greensboro , PO Box 26170 , Greensboro , NC 27402-6170 , USA
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Roberto M Diaz-Rodriguez
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Huimin Yin
- Department of Chemistry , Acadia University , Wolfville , NS B4P 2R6 , Canada
| | - Colin G Cameron
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| | - Alison Thompson
- Department of Chemistry , Dalhousie University , P. O. Box 15000 , Halifax , NS B3H 4R2 , Canada .
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry , The University of Texas at Arlington , 700 Planetarium Pl , Arlington , TX 76019-0065 , USA .
| |
Collapse
|
8
|
Mede T, Jäger M, Schubert US. High-Yielding Syntheses of Multifunctionalized Ru II Polypyridyl-Type Sensitizer: Experimental and Computational Insights into Coordination. Inorg Chem 2019; 58:9822-9832. [PMID: 31322344 DOI: 10.1021/acs.inorgchem.9b00847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RuII complexes based on functionalized 2,6-di(quinolin-8-yl)pyridine (dqp) ligands feature excellent photophysical and geometrical properties, thus suggesting dqp ligands as ideal surrogates for 2,2'-bipyridine (bpy) or 2,2':6',2″-terpyridine (tpy). However, the synthesis of multifunctionalized [Ru(dqp)2]2+-based complexes is often low-yielding, which has hampered their practical value to date. In this study, a universal high-yielding route was explored and corroborated by a mechanistic investigation based on 1H NMR, MS, and density functional theory. With application of high-boiling but less-coordinating solvents (i.e., DMF) during the coordination of dqp by the precursor [Ru(dqp)(MeCN)3]2+, the required reaction temperature is lowered considerably (by 30 °C). In comparison to tpy, the reaction rate for dqp is further reduced which is assigned to the higher steric demand upon the coordination process. Namely, the onset of coordination of a tpy derivative at 60 °C and of dqp at 90 °C is significantly milder than in previous protocols. The versatility of the procedure is demonstrated by the high-yielding syntheses of multifunctionalized RuII complexes reaching up to 90%, whereby the presence of hydroxyl groups and losses during purification may lower the isolated yields substantially. In addition, the same strategy of high-boiling but less-coordinating solvents enabled a milder one-pot protocol to prepare [Ru(dqp)2]2+ from a [Ru(MeCN)6]2+ source, i.e., without the need for in situ reduction or halide abstraction as typical for RuIIICl3 hydrate. Hence, the developed protocol benefits from an improved thermal tolerance of sensitive functional groups, which may be applicable also to related polypyridyl-type ligands.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstraße 10 , 07743 Jena , Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstraße 10 , 07743 Jena , Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC) , Friedrich Schiller University Jena , Humboldtstraße 10 , 07743 Jena , Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena) , Friedrich Schiller University Jena , Philosophenweg 7a , 07743 Jena , Germany
| |
Collapse
|
9
|
Schroot R, Jäger M, Schubert US. Accumulative Charging of Redox-Active Side-Chain-Modified Polymers: Experimental and Computational Insights from Oligo- to Polymeric Triarylamines. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Schroot
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Michael Jäger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
10
|
Nübling F, Hopper TR, Kuei B, Komber H, Untilova V, Schmidt SB, Brinkmann M, Gomez ED, Bakulin AA, Sommer M. Block Junction-Functionalized All-Conjugated Donor-Acceptor Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1143-1155. [PMID: 30523687 DOI: 10.1021/acsami.8b18608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Junction-functionalized donor-acceptor (D-A) block copolymers (BCPs) enable spatial and electronic control over interfacial charge dynamics in excitonic devices such as solar cells. Here, we present the design, synthesis, morphology, and electronic characterization of block junction-functionalized, all-conjugated, all-crystalline D-A BCPs. Poly(3-hexylthiophene) (P3HT), a single thienylated diketopyrrolopyrrole (Th xDPPTh x, x = 1 or 2) unit, and poly{[ N, N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,5'-(2,2'-bithiophene)} (PNDIT2) are used as donor, interfacial unit, and acceptor, respectively. Almost all C-C coupling steps are accomplished by virtue of C-H activation. Synthesis of the macroreagent H-P3HT-Th xDPPTh x, with x determining its C-H reactivity, is key to the synthesis of various BCPs of type H-P3HT-Th xDPPTh x- block-PNDIT2. Morphology is determined from a combination of calorimetry, transmission electron microscopy (TEM), and thin-film scattering. Block copolymer crystallinity of P3HT and PNDIT2 is reduced, indicating frustrated crystallization. A long period lp is invisible from TEM, but shows up in resonant soft X-ray scattering experiments at a length scale of lp ∼ 60 nm. Photoluminescence of H-P3HT-Th xDPPTh x indicates efficient transfer of the excitation energy to the DPP chain end, but is quenched in BCP films. Transient absorption and pump-push photocurrent spectroscopies reveal geminate recombination (GR) as the main loss channel in as-prepared BCP films independent of junction functionalization. Melt annealing increases GR as a result of the low degree of crystallinity and poorly defined interfaces and additionally changes backbone orientation of PNDIT2 from face-on to edge-on. These morphological effects dominate solar cell performance and cause an insensitivity to the presence of the block junction.
Collapse
Affiliation(s)
- Fritz Nübling
- Institut für Makromolekulare Chemie , Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 31 , 79104 Freiburg , Germany
- Freiburger Materialforschungszentrum , Albert-Ludwigs-Universität Freiburg , Stefan-Meier-Straße 21 , 79104 Freiburg , Germany
| | - Thomas R Hopper
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Straße 6 , 01069 Dresden , Germany
| | - Viktoriia Untilova
- Institut Charles Sadron , CNRS-Université de Strasbourg , 23 Rue de Loess , 67034 Strasbourg , France
| | - Simon B Schmidt
- Institut für Chemie , Technische Universität Chemnitz , Straße der Nationen 62 , 09111 Chemnitz , Germany
| | - Martin Brinkmann
- Institut Charles Sadron , CNRS-Université de Strasbourg , 23 Rue de Loess , 67034 Strasbourg , France
| | | | - Artem A Bakulin
- Department of Chemistry , Imperial College London , London SW7 2AZ , United Kingdom
| | - Michael Sommer
- Institut für Chemie , Technische Universität Chemnitz , Straße der Nationen 62 , 09111 Chemnitz , Germany
| |
Collapse
|
11
|
Ulusoy Ghobadi TG, Akhuseyin Yildiz E, Buyuktemiz M, Sadigh Akbari S, Topkaya D, İsci Ü, Dede Y, Yaglioglu HG, Karadas F. A Noble‐Metal‐Free Heterogeneous Photosensitizer‐Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - Sina Sadigh Akbari
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Derya Topkaya
- Department of Chemistry Faculty of Sciences Dokuz Eylul University Tınaztepe Campus Izmir Turkey
| | - Ümit İsci
- Department of Chemistry Gebze Technical University 41400 Kocaeli Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
12
|
Ulusoy Ghobadi TG, Akhuseyin Yildiz E, Buyuktemiz M, Sadigh Akbari S, Topkaya D, İsci Ü, Dede Y, Yaglioglu HG, Karadas F. A Noble‐Metal‐Free Heterogeneous Photosensitizer‐Relay Catalyst Triad That Catalyzes Water Oxidation under Visible Light. Angew Chem Int Ed Engl 2018; 57:17173-17177. [DOI: 10.1002/anie.201811570] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 11/10/2022]
Affiliation(s)
- T. Gamze Ulusoy Ghobadi
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Energy Engineering Faculty of Engineering Ankara University 06830 Ankara Turkey
| | - Elif Akhuseyin Yildiz
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Muhammed Buyuktemiz
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - Sina Sadigh Akbari
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| | - Derya Topkaya
- Department of Chemistry Faculty of Sciences Dokuz Eylul University Tınaztepe Campus Izmir Turkey
| | - Ümit İsci
- Department of Chemistry Gebze Technical University 41400 Kocaeli Turkey
| | - Yavuz Dede
- Department of Chemistry Faculty of Science Gazi University, Teknikokullar 06500 Ankara Turkey
| | - H. Gul Yaglioglu
- Department of Engineering Physics Faculty of Engineering Ankara University 06100 Ankara Turkey
| | - Ferdi Karadas
- UNAM—National Nanotechnology Research Center Institute of Materials Science and Nanotechnology Bilkent University 06800 Ankara Turkey
- Department of Chemistry Faculty of Science Bilkent University 06800 Ankara Turkey
| |
Collapse
|
13
|
Samples EM, Schuck JM, Joshi PB, Willets KA, Dobereiner GE. Synthesis and Properties of N-Arylpyrrole-Functionalized Poly(1-hexene- alt-CO). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Evan M. Samples
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jeremy M. Schuck
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B. Joshi
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Katherine A. Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Graham E. Dobereiner
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
14
|
Mede T, Jäger M, Schubert US. "Chemistry-on-the-complex": functional Ru II polypyridyl-type sensitizers as divergent building blocks. Chem Soc Rev 2018; 47:7577-7627. [PMID: 30246196 DOI: 10.1039/c8cs00096d] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium polypyridyl type complexes are potent photoactive compounds, and have found - among others - a broad range of important applications in the fields of biomedical diagnosis and phototherapy, energy conversion schemes such as dye-sensitized solar cells (DSSCs) and molecular assemblies for tailored photo-initiated processes. In this regard, the linkage of RuII polypyridyl-type complexes with specific functional moieties is highly desirable to enhance their inherent photophysical properties, e.g., with a targeting function to achieve cell selectivity, or with a dye or redox-active subunits for energy- and electron-transfer. However, the classical approach of performing ligand syntheses first and the formation of Ru complexes in the last steps imposes synthetic limitations with regard to tolerating functional groups or moieties as well as requiring lengthy convergent routes. Alternatively, the diversification of Ru complexes after coordination (termed "chemistry-on-the-complex") provides an elegant complementary approach. In addition to the Click chemistry concept, the rapidly developing synthesis and purification methodologies permit the preparation of Ru conjugates via amidation, alkylation and cross-coupling reactions. In this regard, recent developments in chromatography shifted the limits of purification, e.g., by using new commercialized surface-modified silica gels and automated instrumentation. This review provides detailed insights into applying the "chemistry-on-the-complex" concept, which is believed to stimulate the modular preparation of unpreceded molecular assemblies as well as functional materials based on Ru-based building blocks, including combinatorial approaches.
Collapse
Affiliation(s)
- Tina Mede
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | |
Collapse
|