1
|
Požar M, Friedrich L, Millet T, Paulus M, Sternemann C, Perera A. Microscopic Structure of Neat Linear Alkylamine Liquids: An X-Ray Scattering and Computer Simulation Study. J Phys Chem B 2024; 128:10925-10936. [PMID: 39450652 DOI: 10.1021/acs.jpcb.4c04855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Linear amines, from propylamine to nonylamine, are studied under ambient conditions by X-ray scattering and molecular dynamics simulations of various force field models. The major finding is that the prepeak in alkylamines is about 1 order of magnitude weaker than that in alkanols, hence suggesting much weaker hydrogen bonding-induced clustering of the amine groups than for the hydroxyl groups. Computer simulation studies reveal that the OPLS-UA model reproduces the prepeak, but with larger amplitudes, while the GROMOS-UA and CHARMM-AA force fields show almost no prepeak. Simulations of all models show the existence of hydrogen-bonded clusters, equally confirmed by the prominent prepeak of the structure factor between the nitrogen atoms. The hydrogen bond strength, as modeled by the Coulomb association in classical force field models, is about the same order of magnitude for both systems. Then, one may ask what is the origin of the weaker prepeak in alkylamines? Simulation data reveal that the existence of the prepeak is controlled through the cancellation of the positive contributions from the charged group correlations by the negative contributions from the cross charged-uncharged correlations. The C2v symmetry of the amine headgroup hinders clustering, which favors cross correlations with the tail atoms. This is opposite to alkanols where the symmetry of the hydroxyl headgroup favors clustering and hinders cross correlations with the alkyl tail. This competition between charged and uncharged atomic groups appears as a general mechanism to explain the existence of scattering prepeaks, including their position and amplitude.
Collapse
Affiliation(s)
- Martina Požar
- Faculty of Science, University of Split, Rudera Bos̈kovića 33, 21000 Split, Croatia
| | - Lena Friedrich
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Tristan Millet
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252, Paris cedex 05, France
| |
Collapse
|
2
|
Kolaříková A, Perera A. Concentration Fluctuation/Microheterogeneity Duality Illustrated with Aqueous 1,4-Dioxane Mixtures. J Chem Theory Comput 2024; 20:3473-3483. [PMID: 38687823 DOI: 10.1021/acs.jctc.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The structural properties of aqueous 1-4 dioxane mixtures are studied by computer simulations of different water and dioxane force field models, from the perspective of illustrating the link between structural properties at the molecular level and measurable properties such as radiation scattering intensities and Kirkwood-Buff integrals (KBIs). A strategy to consistently correct the KBI obtained from simulations is proposed, which allows us to obtain the genuine KBI corresponding to a given pair of molecular species, in the entire concentration range, and without necessitating excessively large system sizes. The application of this method to the aqueous dioxane mixtures, with an all-atom CHARMM dioxane model and 2 water models, namely, SPC/E and TIP3P, allows one to understand the differences in the structure of the corresponding mixtures at the molecular level, particularly concerning the role of the water aggregates and its model dependence. This study allows us to characterize the dual role played by the concentration fluctuations and the domain segregation, particularly in what concerns the calculated X-ray spectra.
Collapse
Affiliation(s)
- Alena Kolaříková
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252 Paris cedex 05, France
- Faculty of Technology, Department of Physics and Materials Engineering, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, 76001 Zlín, Czech Republic
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252 Paris cedex 05, France
| |
Collapse
|
3
|
Temperature-dependent structure of 1-propanol/water mixtures: X-ray diffraction experiments and computer simulations at low and high alcohol contents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Servis MJ, Piechowicz M, Soderholm L. Impact of Water Extraction on Malonamide Aggregation: A Molecular Dynamics and Graph Theoretic Approach. J Phys Chem B 2021; 125:6629-6638. [PMID: 34128673 DOI: 10.1021/acs.jpcb.1c02962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Solution structure in liquid-liquid extraction affects the efficacy of separation; however, even for simplified organic phases, structural characterization and attribution of aggregation to intermolecular interactions are fundamental challenges. We investigate water uptake into organic phases for two malonamides commonly applied to actinide and lanthanide separations. Extracted water induces reorganization of the amphiphilic extractant molecules, although we find this rearrangement is not strongly manifested in small-angle X-ray scattering making it challenging to probe without methods such as atomistic simulation. Using a graph theoretic approach to define hydrogen bonded water/malonamide aggregates from molecular dynamics simulations, we find evidence of a characteristic aggregate size by water number that results from geometric accommodation of the surrounding malonamide molecules. This implies a degree of size selectivity inherent to these water-in-oil aggregates. Conversely, we find no evidence of a characteristic size of the aggregates with respect to their malonamide number. By defining a separate graphical representation of self-association of the amphiphilic malonamides, we quantify how water affects the local and nonlocal topology of the malonamide network, providing a basis for characterization of the structure and impact of polar solutes in increasingly complex organic phases.
Collapse
Affiliation(s)
- Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marek Piechowicz
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - L Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Servis MJ, Piechowicz M, Skanthakumar S, Soderholm L. Molecular-scale origins of solution nanostructure and excess thermodynamic properties in a water/amphiphile mixture. Phys Chem Chem Phys 2021; 23:8880-8890. [PMID: 33876047 DOI: 10.1039/d1cp00082a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular and nanoscale origins of nonideality in excess thermodynamic properties are essential to understanding cosolvent mixtures, yet they remain challenging to determine. Here, we consider a binary mixture of water and an amphiphile, N,N,N',N'-tetramethylmalonamide (TMMA), which is characterized by strong hydrogen bonding between the two components and no hydrogen bonding between amphiphiles. Using molecular dynamics simulation, validated with excess volume measurements and X-ray scattering, we identify three distinct solution regimes across the composition range of the binary mixture and find that the transition between two of these regimes, marked by the water percolation threshold, is closely correlated with minima in the excess volume and excess enthalpy. Structural analysis of the simulations reveals an interplay between local interactions and solution nanostructure, determined by the relative strength of the water-water and water-amphiphile hydrogen bonding interactions. By comparison with other amphiphiles, such as linear alcohols, the relative strength of like and unlike interactions between water and amphiphile affects the relationship between thermodynamics and structural regimes. This provides insight into how molecular forces of mutual solvation interact across length scales and how they manifest in excess thermodynamic properties.
Collapse
Affiliation(s)
- Michael J Servis
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | | | | | | |
Collapse
|
6
|
Servis MJ, Piechowicz M, Shkrob IA, Soderholm L, Clark AE. Amphiphile Organization in Organic Solutions: An Alternative Explanation for Small-Angle X-ray Scattering Features in Malonamide/Alkane Mixtures. J Phys Chem B 2020; 124:10822-10831. [DOI: 10.1021/acs.jpcb.0c07080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael J. Servis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Marek Piechowicz
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - L. Soderholm
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Aurora E. Clark
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Požar M, Bolle J, Sternemann C, Perera A. On the X-ray Scattering Pre-peak of Linear Mono-ols and the Related Microstructure from Computer Simulations. J Phys Chem B 2020; 124:8358-8371. [PMID: 32856907 DOI: 10.1021/acs.jpcb.0c05932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The X-ray scattering intensities (I(k)) of linear alkanols OH(CH2)n-1CH3 obtained from experiments (methanol to 1-undecanol) and computer simulations (methanol to 1-nonanol) of different force field models are comparatively studied particularly in order to explain the origin and the properties of the scattering pre-peak in the k-vector range 0.3-1 Å-1. The experimental I(k) values show two apparent features: the pre-peak position kP decreases with increasing n, and more intriguingly, the amplitude AP goes through a maximum at 1-butanol (n = 4). The first feature is well reproduced by all force-field models, while the second shows strong model dependence. The simulations reveal various shapes of clusters of the hydroxyl head-group from n>2. kP is directly related to the size of the meta-objects corresponding to such clusters surrounded by their alkyl tails. The explanation of the AP turnover at n = 4 is more involved in terms of cancellations of atom-atom structure factor S(k) contributions related to domain ordering. The flexibility of the alkyl tails tends to reduce the cross contributions, thus revealing the crucial importance of this parameter in the models. Force fields with all-atom representation are less successful in reproducing the pre-peak features for smaller alkanols, n<6, possibly because they blur the charge ordering process since all atoms bear partial charges. The analysis clearly shows that it is not possible to obtain a model-free explanation of the features of I(k).
Collapse
Affiliation(s)
- Martina Požar
- Faculty of Science, University of Split, Rudjera Boškovića 33, Split 21000, Croatia
| | - Jennifer Bolle
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund D-44221, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, Dortmund D-44221, Germany
| | - Aurélien Perera
- Laboratoire de Physique Thé orique de la Matière Condensé e (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, Paris F75252 cedex 05, France
| |
Collapse
|
8
|
Servis MJ, Martinez-Baez E, Clark AE. Hierarchical phenomena in multicomponent liquids: simulation methods, analysis, chemistry. Phys Chem Chem Phys 2020; 22:9850-9874. [PMID: 32154813 DOI: 10.1039/d0cp00164c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complex, multicomponent, solutions have often been studied solely through the lens of specific applications of interest. Yet advances to both simulation methodologies (enhanced sampling, etc.) and analysis techniques (network analysis algorithms and others), are creating a trove of data that reveal transcending characteristics across vast compositional phase space. This perspective discusses technical considerations of the reliable and accurate simulations of complex solutions, followed by the advances to analysis algorithms that elucidate coupling of different length and timescale behavior (hierarchical phenomena). The different manifestations of hierarchical phenomena are presented across an array of solution environments, emphasizing fundamental and ongoing science questions. With a more advanced molecular understanding in hand, a quintessential application (solvent extraction) is discussed, where significant opportunities exist to re-imagine the technical scope of an established technology.
Collapse
Affiliation(s)
- Michael J Servis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
9
|
Overduin SD, Perera A, Patey GN. Structural behavior of aqueous t-butanol solutions from large-scale molecular dynamics simulations. J Chem Phys 2019; 150:184504. [PMID: 31091933 DOI: 10.1063/1.5097011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Large-scale molecular dynamics simulations are reported for aqueous t-butanol (TBA) solutions. The CHARMM generalized force field (CGenFF) for TBA is combined with the TIP4P/2005 model for water. Unlike many other common TBA models, the CGenFF model is miscible with water in all proportions at 300 K. The main purpose of this work is to investigate the existence and nature of a microheterogeneous structure in aqueous TBA solutions. Our simulations of large systems (128 000 and 256 000 particles) at TBA mole fractions of 0.06 and 0.1 clearly reveal the existence of long-range correlations (>10 nm) that show significant variations on long time scales (∼50 ns). We associate these long-range slowly varying correlations with the existence of supramolecular domainlike structures that consist of TBA-rich and water-rich regions. This structure is always present but continually changing in time, giving rise to long-range slowly varying pair correlation functions. We find that this behavior appears to have little influence on the single particle dynamics; the diffusion coefficients of both TBA and water molecules lie in the usual liquid state regime, and mean square displacements provide no indication of anomalous diffusion. Using our large system simulations, we are able to reliably calculate small angle x-ray scattering and small angle neutron scattering spectra, except at a very low wave vector, and the results agree well with recent experiments. However, this paper shows that simulation of the relatively simple TBA/water system remains challenging. This is particularly true if one wishes to obtain properties such as Kirkwood-Buff factors, or scattering functions at a low wave vector, which strongly depend on the long-range behavior of the pair correlations.
Collapse
Affiliation(s)
- S D Overduin
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Université Pierre et Marie Curie, 4 Place Jussieu, F75252 Paris Cedex 05, France
| | - G N Patey
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
10
|
Baptista A, Perera A. Modeling micro-heterogeneity in mixtures: The role of many body correlations. J Chem Phys 2019; 150:064504. [PMID: 30770003 DOI: 10.1063/1.5066598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A two-component interaction model is introduced herein, which allows us to describe macroscopic miscibility with various modes of tunable micro-segregation, ranging from phase separation to micro-segregation, and is in excellent agreement with structural quantities obtained from simulations and the liquid state hypernetted-chain like integral equation theory. The model is based on the conjecture that the many-body correlation bridge function term in the closure relation can be divided into one part representing the segregation effects, which are modeled herein, and the usual part representing random many body fluctuations. Furthermore, the model allows us to fully neglect these second contributions, thus increasing the agreement between the simulations and the theory. The analysis of the retained part of the many body correlations gives important clues about how to model the many body bridge functions for more realistic systems exhibiting micro-segregation, such as aqueous mixtures.
Collapse
Affiliation(s)
- Anthony Baptista
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252 Paris Cedex 05, France
| | - Aurélien Perera
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Université, 4 Place Jussieu, F75252 Paris Cedex 05, France
| |
Collapse
|
11
|
Almásy L, Kuklin AI, Požar M, Baptista A, Perera A. Microscopic origin of the scattering pre-peak in aqueous propylamine mixtures: X-ray and neutron experiments versus simulations. Phys Chem Chem Phys 2019; 21:9317-9325. [DOI: 10.1039/c9cp01137d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of aqueous propylamine mixtures is investigated through X-ray and neutron scattering experiments, and the scattered intensities compared with computer simulation data.
Collapse
Affiliation(s)
- László Almásy
- State Key Laboratory of Environment-friendly Energy Materials
- Southwest University of Science and Technology
- Mianyang 621010
- China
- Wigner Research Centre for Physics
| | - Alexander I. Kuklin
- Frank Laboratory of Neutron Physics
- Joint Institute for Nuclear Research
- Dubna
- Russia
| | | | - Anthony Baptista
- Sorbonne Université
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Paris cedex 05
- France
| | - Aurélien Perera
- Sorbonne Université
- Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600)
- Paris cedex 05
- France
| |
Collapse
|