1
|
Ren S, Feng Y, Zhang Y, Liu Y, Zhao J, Li X, Li J, Jia H, Li Z, Lou X. Optical-fiber sensor for 17β-Estradiol-binding aptamer evaluation and specific detection of 17β-Estradiol in serum at physiological concentrations. Talanta 2025; 285:127320. [PMID: 39642610 DOI: 10.1016/j.talanta.2024.127320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Methods for evaluation of immobilized-small molecule-binding aptamers are rare. In this study, taking the evaluation of 17β-Estradiol (E2) aptamers as an example, we first summarized the reported affinity and specificity results of 16 E2 aptamers, highlighting the issues of insufficient and inconsistent results and the lacking of evaluation of immobilized aptamers. We further exemplified the limited application scope of current affinity techniques by testing the two most widely-applied E2 aptamers, Kim76 and Alsa35, using the three label-free fluorescence assays and two nuclease protection assays. Subsequently, we evaluated the affinity of immobilized-E2 aptamers, Alsa35 and E09, using fiber optic evanescent wave aptasensor (FOEW) based on the competitive binding of target and fluorophore-labeled complementary strand with the fiber surface immobilized-aptamer. The results revealed that Alsa35 had the better affinity and specificity than E09. Using Alsa35-based FOEW, the enzyme-free detection of E2 spiked in river water and human serum was respectively realized with the unprecedented limits of detection (LOD, S/N = 3) of 4.75 (undiluted river water) and 206 pM (undiluted serum). FOEW is a valuable addition to analytical approaches for evaluation of immobilized-aptamers and a general platform for ultrasensitive target detection.
Collapse
Affiliation(s)
- Shang Ren
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yanqi Feng
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yi Zhang
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Yulin Liu
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Jiaxing Zhao
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Xiaoqi Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Jinming Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Haijing Jia
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China.
| | - Xinhui Lou
- Department of Chemistry, Capital Normal University, Xisanhuan North Road. 105, Beijing, 100048, China.
| |
Collapse
|
2
|
Chen L, Xu Y, Zhou L, Ma D, Zhang R, Liu Y, Mi X. Ultra-sensitive fluorescence-activated droplet single-cell sorting based on Tetramer-HCR-EvaGreen amplification. MICROSYSTEMS & NANOENGINEERING 2025; 11:10. [PMID: 39819845 PMCID: PMC11739583 DOI: 10.1038/s41378-024-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
The current single-cell analysis technologies such as fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting (FADS) could decipher the cellular heterogeneity but were constrained by low sorting performance and cell viability. Here, an ultra-sensitive single-cell sorting platform has been developed by integrating the FADS technology with Tetramer-HCR-EvaGreen (THE) fluorescence signal amplification. The THE system produced much higher fluorescence signal than that of the single Tetramer or Tetramer-HCR signal amplification. Upon application to target MCF-7 cells, the platform exhibited high efficacy and selectivity while maintaining more than 95% cell viability. The THE-FADS achieved sorting efficiencies of 55.5% and 50.3% with purities of 91% and 85% for MCF-7 cells in PBS solutions and simulated serum samples, respectively. The sorted MCF-7 cells showed similar proliferation together with CK19 and EGFR mRNA expression compared with the control cells. The established THE-FADS showed the promising prospects to cellular heterogeneity understanding and personalized medicine.
Collapse
Affiliation(s)
- Long Chen
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Xu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lele Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ding Ma
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physics and Optoelectronic Engineering Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
3
|
Dai X, Cao M, Wang Z. Digital Melting Curve Analysis for Multiplex Quantification of Nucleic Acids on Droplet Digital PCR. BIOSENSORS 2025; 15:36. [PMID: 39852087 PMCID: PMC11764372 DOI: 10.3390/bios15010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
We present a cost-effective and simple multiplex nucleic acid quantification method using droplet digital PCR (ddPCR) with digital melting curve analysis (MCA). This approach eliminates the need for complex fluorescent probe design, reducing both costs and dependence on fluorescence channels. We developed a convolutional neighborhood search algorithm to correct droplet displacement during heating, ensuring precise tracking and accurate extraction of melting curves. An experimental protocol for digital MCA on the ddPCR platform was established, enabling accurate quantification of six target pathogen genes using a single fluorescence channel, with an average accuracy of 85%. Our method overcomes the multiplexing limitations of ddPCR, facilitating its application in multi-target pathogen detection.
Collapse
Affiliation(s)
| | | | - Zunliang Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| |
Collapse
|
4
|
Kulyk O, Krivoshey A, Kolosova O, Prylutska I, Vasiliu T, Puf R, Mocci F, Laaksonen A, Perepelytsya S, Kobzev D, Svoiakov R, Tkachuk Z, Tatarets A. Nucleic acid-binding bis-acridine orange dyes with improved properties for bioimaging and PCR applications. J Mater Chem B 2024; 12:11968-11982. [PMID: 39439394 DOI: 10.1039/d4tb01775g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Understanding the intricate interactions of molecular dyes with nucleic acids is pivotal for advancing medical and biochemical applications. In this work, we present a comprehensive study of the interplay between a novel series of bis-acridine orange (BAO) dyes and double-stranded DNA (dsDNA). These BAO dyes were intentionally designed as two acridine orange units connected by neutral linkers featuring a 2,5-disubstituted thiophene moiety. Comparative analysis of BAO compounds with the widely utilized DNA-binding dye EvaGreen (EG) was carried out for fibroblast staining and qPCR analysis. The results show that BAO dyes outperform EG by supporting PCR amplification over a broader concentration range (0.5-5.0 μM). Furthermore, they exhibit an exceptional capability to generate consistent DNA melting curves regardless of DNA concentration fluctuations. Molecular dynamics simulations showed that BAO dyes when interacting with dsDNA unfold from the stacked conformation to the elongated one. The difference in the energy between the conformations is shown to be concomitant with fluorescence enhancement. This study enriches our understanding of the intricate interplay between innovative BAO dyes and dsDNA, fostering their applications in medical and biochemical research, particularly in qPCR methodologies and bioimaging techniques.
Collapse
Affiliation(s)
- Olesia Kulyk
- Institute of Functional Materials Chemistry of State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine.
| | - Alexander Krivoshey
- Institute of Functional Materials Chemistry of State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine.
| | - Olga Kolosova
- Institute of Functional Materials Chemistry of State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine.
| | - Ivanna Prylutska
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Tudor Vasiliu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, 700487, Romania
- The Research Institute of the University of Bucharest (ICUB), Bucharest, 050663, Romania
| | - Razvan Puf
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, 700487, Romania
| | - Francesca Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cagliari, 09042, Italy
| | - Aatto Laaksonen
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, Iasi, 700487, Romania
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, Luleå, 97187, Sweden
| | - Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Dmytro Kobzev
- Institute of Functional Materials Chemistry of State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine.
- Institute for Experimental Molecular Imaging, Center for Biohybrid Medical Systems, RWTH Aachen University Clinic, Aachen, 52074, Germany
| | - Rostyslav Svoiakov
- Institute of Functional Materials Chemistry of State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine.
| | - Zenoviy Tkachuk
- Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, Kyiv, 03143, Ukraine
| | - Anatoliy Tatarets
- Institute of Functional Materials Chemistry of State Scientific Institution "Institute for Single Crystals" of National Academy of Sciences of Ukraine, Kharkiv, 61072, Ukraine.
| |
Collapse
|
5
|
Bennett HA, McAdorey A, Yan H. Staining Properties of Selected Commercial Fluorescent Dyes Toward B- and Z-DNA. J Fluoresc 2024; 34:1193-1205. [PMID: 37505363 DOI: 10.1007/s10895-023-03343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
The properties of six commonly used, commercially available, fluorescent dyes were compared in staining right-handed B-DNA and left-handed Z-DNA. All showed different degree of fluorescence turn-on in the presence of B-DNA, but very little in the presence of Z-DNA. The optimal range of dye-DNA ratios of DNA was determined. While these dyes do not provide a turn-on type probe for Z-DNA, staining between B- and Z-DNA using dyes such as SYBR Green I was shown to be useful in tracking the kinetics of conformational changes between these two forms of DNA. Finally, SYBR Green I showed unique circular dichroism patterns in 4 M NaCl that change in the presence of double stranded DNA, both in the visible and UV range.
Collapse
Affiliation(s)
- Hayley-Ann Bennett
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Alyssa McAdorey
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
6
|
Zhang N, Li C, Dou X, Du Y, Tian F. Test Article for automation purposes. Crit Rev Anal Chem 2023; 53:1969-1989. [PMID: 37881955 DOI: 10.1080/10408347.2022.2042999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
7
|
Xu J, Wang GA, Gao L, Wu L, Lei Q, Deng H, Li F. Enabling programmable dynamic DNA chemistry using small-molecule DNA binders. Nat Commun 2023; 14:4248. [PMID: 37460620 DOI: 10.1038/s41467-023-40032-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The binding of small molecules to the double helical structure of DNA, through either intercalation or minor groove binding, may significantly alter the stability and functionality of DNA, which is a fundamental basis for many therapeutic and sensing applications. Here, we report that small-molecule DNA binders can also be used to program reaction pathways of a dynamic DNA reaction, where DNA strand displacement can be tuned quantitatively according to the affinity, charge, and concentrations of a given DNA binder. The binder-induced nucleic acid strand displacement (BIND) thus enables innovative technologies to accelerate the discovery and characterization of bioactive small molecules. Specifically, we demonstrate the comprehensive characterization of existing and newly discovered DNA binders, where critical parameters for binding affinity and sequence selectivity can be obtained in a single, unbiased molecular platform without the need for any specialized equipment. We also engineer a tandem BIND system as a high-throughput screening assay for discovering DNA binders, through which 8 DNA binders were successfully discovered from a library of 700 compounds.
Collapse
Affiliation(s)
- Junpeng Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Lu Gao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Lang Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Qian Lei
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China.
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
8
|
Zhang HL, Lv C, Li ZH, Jiang S, Cai D, Liu SS, Wang T, Zhang KH. Analysis of aptamer-target binding and molecular mechanisms by thermofluorimetric analysis and molecular dynamics simulation. Front Chem 2023; 11:1144347. [PMID: 37228865 PMCID: PMC10204870 DOI: 10.3389/fchem.2023.1144347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Aptamers are valuable for bioassays, but aptamer-target binding is susceptible to reaction conditions. In this study, we combined thermofluorimetric analysis (TFA) and molecular dynamics (MD) simulations to optimize aptamer-target binding, explore underlying mechanisms and select preferred aptamer. Methods: Alpha-fetoprotein (AFP) aptamer AP273 (as the model) was incubated with AFP under various experimental conditions, and melting curves were measured in a real-time PCR system to select the optimal binding conditions. The intermolecular interactions of AP273-AFP were analysed by MD simulations with these conditions to reveal the underlying mechanisms. A comparative study between AP273 and control aptamer AP-L3-4 was performed to validate the value of combined TFA and MD simulation in selecting preferred aptamers. Results: The optimal aptamer concentration and buffer system were easily determined from the dF/dT peak characteristics and the melting temperature (Tm) values on the melting curves of related TFA experiments, respectively. A high Tm value was found in TFA experiments performed in buffer systems with low metal ion strength. The molecular docking and MD simulation analyses revealed the underlying mechanisms of the TFA results, i.e., the binding force and stability of AP273 to AFP were affected by the number of binding sites, frequency and distance of hydrogen bonds, and binding free energies; these factors varied in different buffer and metal ion conditions. The comparative study showed that AP273 was superior to the homologous aptamer AP-L3-4. Conclusion: Combining TFA and MD simulation is efficient for optimizing the reaction conditions, exploring underlying mechanisms, and selecting aptamers in aptamer-target bioassays.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ting Wang
- *Correspondence: Ting Wang, ; Kun-He Zhang,
| | | |
Collapse
|
9
|
Tukur F, Bagra B, Jayapalan A, Liu M, Tukur P, Wei J. Plasmon-Exciton Coupling Effect in Nanostructured Arrays for Optical Signal Amplification and SARS-CoV-2 DNA Sensing. ACS APPLIED NANO MATERIALS 2023; 6:2071-2082. [PMID: 36789152 PMCID: PMC9888407 DOI: 10.1021/acsanm.2c05063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
A surface plasmon resonance (SPR)-enhanced optical signal using a nanoslit array and acridine orange (AO) dye system at a flexible poly(dimethylsiloxane) (PDMS) substrate was achieved in this work and demonstrated a simple sensing scheme to directly detect SARS-CoV-2 nucleic acid via DNA hybridization. A simple nanoimprinting pattern transfer technique was introduced to form uniform reproducible nanoslit arrays where the dimensions of the slit array were controlled by the thickness of the gold film. The plasmon-exciton coupling effect on the optical enhancement of different dye molecules, i.e., AO, propidium iodide (PI), or dihydroethidium (DHE) attached to the nanoslit surfaces, was examined thoroughly by measuring the surface reflection and fluorescence imaging. The results indicate that the best overlap of the plasmon resonance wavelength to the excitation spectrum of AO presented the largest optical enhancement (∼57×) compared to the signal at flat gold surfaces. Based on this finding, a sensitive assay for detecting DNA hybridization was generated using the interaction of the selected SARS-CoV-2 ssDNA and dsDNA with AO to trigger the metachromatic behavior of the dye at the nanoarray surfaces. We found strong optical signal amplification on the formation of acridine-ssDNA complexes and a quenched signal upon hybridization to the complementary target DNA (ct-DNA) along with a blue shift in the fluorescence of AO-dsDNAs. A quantitative evaluation of the ct-DNA concentration in a range of 100-0.08 nM using both the reflection and emission imaging signals demonstrated two linear regimes with a lowest detection limit of 0.21 nM. The sensing method showed high sensitivity and distinguished signals from 1-, 2-, and 3-base mismatched DNA targets, as well as high stability and reusability. This approach toward enhancing optical signal for DNA sensing offers promise in a general, rapid, and direct vision detection method for nucleic acid analytes.
Collapse
|
10
|
Chen J, Xu J, Xiang J, Wan T, Deng H, Li D. A multivalent activatable aptamer probe with ultralow background signal and high sensitivity for diagnosis of lung adenocarcinoma. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Chen A. Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Two novel "release-on-demand" fluorescent biosensors for probing UV-induced DNA damage induced in single stranded and double stranded DNA: Comparative study. Int J Biol Macromol 2022; 215:657-664. [PMID: 35777509 DOI: 10.1016/j.ijbiomac.2022.06.163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/25/2022] [Indexed: 11/22/2022]
Abstract
Light in the UVC spectral region damages both single-strand (ssDNA) and double-strand DNA (dsDNA), and contributes to the formation of mutagenic photoproducts. In-vivo studies show greater damage for ssDNA compared to dsDNA. However, excited-state spectroscopy shows that dsDNA has longer excited-state lifetime than ssDNA, which increases the probability of damage for dsDNA. However, lack of a direct comparison of in-vitro ssDNA and dsDNA damage rates precludes the development of a model that elucidates the molecular factors responsible for damage. In this work, two novel sensitive "release-on-demand" biosensors are developed for the selective probing of DNA-damage and comparing the rate of DNA damage in ssDNA and dsDNA. The two biosensors involve the use of EvaGreen and Hoechst dyes for the sensitive probing of DNA-damage. The results show that ssDNA is damaged at a faster rate than dsDNA in the presence of UVC light (200-295 nm). Furthermore, we examined the effect of G/C composition on the damage rate for mostly A/T ssDNA and dsDNA oligonucleotides. Our results show that DNA damage rates are highly dependent on the fraction of guanines in the sequence, but that in-vitro dsDNA always exhibits an overall slower rate of damage compared to ssDNA, essentially independent of sequence.
Collapse
|
13
|
Savonnet M, Aubret M, Laurent P, Roupioz Y, Cubizolles M, Buhot A. Kinetics of Isothermal Dumbbell Exponential Amplification: Effects of Mix Composition on LAMP and Its Derivatives. BIOSENSORS 2022; 12:bios12050346. [PMID: 35624647 PMCID: PMC9138685 DOI: 10.3390/bios12050346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is an exponential amplification method of DNA strands that is more and more used for its high performances. Thanks to its high sensitivity and selectivity, LAMP found numerous applications from the detection of pathogens or viruses through their genome amplification to its incorporation as an amplification strategy in protein or miRNA biomarker quantification. The LAMP method is composed of two stages: the first one consists in the transformation of the DNA strands into dumbbell structures formed of two stems and loops thanks to four primers; then, in the second stage, only two primers are required to amplify the dumbbells exponentially in numerous hairpins of increasing lengths. In this paper, we propose a theoretical framework to analyze the kinetics of the second stage of LAMP, the isothermal dumbbell exponential amplification (IDEA) as function of the physico-chemical parameters of the amplification reaction. Dedicated experiments validate the models. We believe these results may help the optimization of LAMP performances by reducing the number of experiments necessary to find the best parameters.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Mathilde Aubret
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Patricia Laurent
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
| | - Myriam Cubizolles
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
- Correspondence: (M.C.); (A.B.)
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Correspondence: (M.C.); (A.B.)
| |
Collapse
|
14
|
Zhang N, Li C, Dou X, Du Y, Tian F. Overview and Future Perspectives of Microfluidic Digital Recombinase Polymerase Amplification (dRPA). Crit Rev Anal Chem 2022; 52:1969-1989. [PMID: 35201910 DOI: 10.1080/10408347.2022.2042669] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Digital recombinase polymerase amplification (dRPA) aims to quantify the initial amount of nucleic acid by dividing nucleic acid and all reagents required for the RPA reaction evenly into numerous individual reaction units, such as chambers or droplets. dRPA turns out to be a prominent technique for quantifying the absolute quantity of target nucleic acid because of its advantages including low equipment requirements, short time consumption, as well as high sensitivity and specificity. dRPA combined with microfluidics are recognized as simple, various, and high-throughput nucleic acid quantization systems. This paper classifies the microfluidic dRPA systems over the last decade. We analyze and summarize the vital technologies of various microfluidic dRPA systems (e.g., chip preparation process, segmentation principle, microfluidic control, and statistical analysis methods), and major efforts to address limitations (e.g., prevention of evaporation and contamination, accurate initiation, and reduction of manual operation). In addition, this paper summarizes key factors and potential constraints to the success of the microfluidic dRPA to help more researchers, and possible strategies to overcome the mentioned challenges. Lastly, actual suggestions and strategies are proposed for the subsequent development of microfluidic dRPA.
Collapse
Affiliation(s)
- Ning Zhang
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Chao Li
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Xuechen Dou
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Yaohua Du
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Science, Tianjin, China
| |
Collapse
|
15
|
Nair SG, El-Yazbi AF, El-Yazbi AF. Investigation of nucleic acid damage induced by a novel ruthenium anti-cancer drug using multiple analytical techniques: Sequence specificity and damage kinetics. Int J Biol Macromol 2022; 198:68-76. [PMID: 34963625 DOI: 10.1016/j.ijbiomac.2021.12.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022]
Abstract
Cis-diacetonitrilo-bis(bipyridine) ruthenium(II) chloride is a recently introduced cis-platin analogue that has anti-cancer properties with lower side effects. However, the sequence dependence of its DNA damaging mechanism is unclear. Here, we present a simple, sensitive, multiplexed mix-and-read assay for ascertaining the molecular mechanism of DNA damage induced by the studied ruthenium complex (Ru-complex). The damage kinetics and sequence specificity for the Ru-complex induced DNA damage are examined by studying the induced damage in various oligonucleotide sequences by EvaGreen-DNA intercalator probe. High-through-put measurements were established using a 96-well microplate platform that allows multiple sequences to be measured simultaneously. The results show that the extent of damage increases with an increasing number of guanines, with considerable amount of damage at GA, GT and GC sites, in particular. Furthermore, the interaction of Ru-complex with DNA was confirmed using thermal analysis and MALDI-TOF-MS. Results indicate that the activated Ru-complex preferentially binds via both mono- and di-adduct formation at G and GG sites, respectively. Moreover, the developed method was successfully applied for the determination of the potency of the studied Ru-complex to induce DNA damage in K-Ras and N-Ras family of genes, one of the most common oncogenic events in cancer.
Collapse
Affiliation(s)
- Sindhu G Nair
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21561, Egypt; Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt
| | - Amira F El-Yazbi
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21526, Egypt.
| |
Collapse
|
16
|
Zhang L, Liu D, Li B, Xie J, Liu J, Zhang Z. Single nucleotide polymorphism genotyping of ALDH2 gene based on asymmetric PCR and fluorescent probe-mediated melting curves. Anal Biochem 2021; 642:114509. [PMID: 34864041 DOI: 10.1016/j.ab.2021.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/15/2022]
Abstract
Detection of single nucleotide polymorphisms (SNPs) is of great value in precision medicine. The polymorphism of the aldehyde dehydrogenase 2 (ALDH2) gene is caused by a G1510A transition, resulting in the substitution of glutamic acid by lysine at position 487. People of different ALDH2 genotypes show different susceptibility to cancer, metabolic diseases, etc. SNP analysis based on fluorescent probe-mediated melting curves is a relatively efficient and cost-effective method. Genomic DNA extracted from 100 whole blood samples was subjected to polymorphisms mutational analysis using asymmetric PCR and probe-mediated melting curves. Then a certain number of samples from each genotype were randomly selected for direct sequencing verification. The new assay can be performed in 2 h without post-PCR processing such as gel electrophoresis and validated by direct sequencing in a blind study with 100% concordance. Moreover, comparing the detection of polymorphisms of ALDH2 with the clinics, and an overall agreement of 100% (100/100) was demonstrated. Our study has shown a high level of concordance between DNA sequencing, which is suitable for the detection of clinical specimens. Based on the concept of probe-mediated melting curves, we further developed this platform as a universal strategy for the detection of polymorphisms related to folate metabolism.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Dan Liu
- Department of Clinical Laboratory, Zigong Fourth People' Hospital, Zigong, 643099, PR China
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Jingling Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Zhang Zhang
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, PR China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
17
|
Zhang H, Yan Z, Wang X, Gaňová M, Chang H, Laššáková S, Korabecna M, Neuzil P. Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel. ACS OMEGA 2021; 6:22292-22300. [PMID: 34497918 PMCID: PMC8412922 DOI: 10.1021/acsomega.1c02971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals.
Collapse
Affiliation(s)
- Haoqing Zhang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Zhiqiang Yan
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Xinlu Wang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Martina Gaňová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Honglong Chang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Soňa Laššáková
- Institute
of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Marie Korabecna
- Institute
of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Pavel Neuzil
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- School
of Electrical Engineering and Computer Technology, Brno University of Technology, Technická 10, 612 00 Brno, Czech Republic
| |
Collapse
|
18
|
Chung ME, Goroncy K, Kolesnikova A, Schönauer D, Schwaneberg U. Display of functional nucleic acid polymerase on Escherichia coli surface and its application in directed polymerase evolution. Biotechnol Bioeng 2020; 117:3699-3711. [PMID: 32827316 DOI: 10.1002/bit.27542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/30/2020] [Accepted: 08/09/2020] [Indexed: 12/29/2022]
Abstract
We report a first of its kind functional cell surface display of nucleic acid polymerase and its directed evolution to efficiently incorporate 2'-O-methyl nucleotide triphosphates (2'-OMe-NTPs). In the development of polymerase cell surface display, two autotransporter proteins (Escherichia coli adhesin involved in diffuse adherence and Pseudomonas aeruginosa esterase A [EstA]) were employed to transport and anchor the 68-kDa Klenow fragment (KF) of E. coli DNA polymerase I on the surface of E. coli. The localization and function of the displayed KF were verified by analysis of cell outer membrane fractions, immunostaining, and fluorometric detection of synthesized DNA products. The EstA cell surface display system was applied to evolve KF for the incorporation of 2'-OMe-NTPs and a KF variant with a 50.7-fold increased ability to successively incorporate 2'-OMe-NTPs was discovered. Expanding the scope of cell-surface displayable proteins to the realm of polymerases provides a novel screening tool for tailoring polymerases to diverse application demands in a polymerase chain reaction and sequencing-based biotechnological and medical applications. Especially, cell surface display enables novel polymerase screening strategies in which the heat-lysis step is bypassed and thus allows the screening of mesophilic polymerases with broad application potentials ranging from diagnostics and DNA sequencing to replication of synthetic genetic polymers.
Collapse
Affiliation(s)
- Mu-En Chung
- SeSaM-Biotech GmbH, Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | | | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.,DWI-Leibniz-Institute for Interactive Materials, Aachen, Germany
| |
Collapse
|
19
|
Shen R, Jia Y, Mak PI, Martins RP. Clip-to-release on amplification (CRoA): a novel DNA amplification enhancer on and off microfluidics. LAB ON A CHIP 2020; 20:1928-1938. [PMID: 32352133 DOI: 10.1039/d0lc00318b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite its high sensitivity, low cost, and high efficiency as a DNA amplification indicator with a yes/no answer, dsDNA-binding dye encounters incompatibility when used in microfluidic systems, resulting in problems such as false negative amplification results. Besides, its inhibition of amplification at high concentrations hinders its application both on-chip and off-chip. In this study, we propose a novel DNA amplification enhancer to counteract the drawbacks of dsDNA-binding dyes. It acts as a temporary reservoir for the free-floating dyes in solution and releases them on demand during the amplification process. Through this clip-to-release on amplification mechanism, the enhancer lowered the background fluorescence of sample droplets before amplification, enhanced the signal-to-background ratio of positive samples, and eliminated the false negative signal of on-chip PCR. Moreover, the enhancer increased the off-chip polymerase chain reaction (PCR) efficiency, boosted the fluorescence signal up to 10-fold, and made less nonspecific amplification product. All the factors affecting the enhancer's performance are investigated in detail, including its structure and concentration, and the types of dsDNA-binding dye used in the reaction. Finally, we demonstrated the broad application of the proposed amplification enhancer in various DNA amplification systems, for various genes, and on various amplification platforms. It would reignite the utilization of dsDNA dyes for wider applications in DNA analysis both on-chip and off-chip.
Collapse
Affiliation(s)
- Ren Shen
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China. and Faculty of Science and Technology - ECE, University of Macau, Macau, China
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China. and Faculty of Science and Technology - ECE, University of Macau, Macau, China and Faculty of Health Sciences, University of Macau, Macau, China
| | - Pui-In Mak
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China. and Faculty of Science and Technology - ECE, University of Macau, Macau, China
| | - Rui P Martins
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China. and Faculty of Science and Technology - ECE, University of Macau, Macau, China and On Leave from Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
20
|
Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 2020; 412:2009-2023. [PMID: 32052066 PMCID: PMC7072044 DOI: 10.1007/s00216-020-02490-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
DNA analysis has seen an incredible development in terms of instrumentation, assays and applications over the last years. Massively parallel sequencing (MPS) and digital PCR are now broadly applied in research and diagnostics, and quantitative PCR is used for more and more practises. All these techniques are based on in vitro DNA polymerization and fluorescence measurements. A major limitation for successful analysis is the various sample-related substances that interfere with the analysis, i.e. PCR inhibitors. PCR inhibition affects library preparation in MPS analysis and skews quantification in qPCR, and some inhibitors have been found to quench the fluorescence of the applied fluorophores. Here, we provide a deeper understanding of mechanisms of specific PCR inhibitors and how these impact specific analytical techniques. This background knowledge is necessary in order to take full advantage of modern DNA analysis techniques, specifically for analysis of samples with low amounts of template and high amounts of background material. The classical solution to handle PCR inhibition is to purify or dilute DNA extracts, which leads to DNA loss. Applying inhibitor-tolerant DNA polymerases, either single enzymes or blends, provides a more straightforward and powerful solution. This review includes mechanisms of specific PCR inhibitors as well as solutions to the inhibition problem in relation to cutting-edge DNA analysis.
Collapse
Affiliation(s)
- Maja Sidstedt
- Swedish National Forensic Centre, Swedish Police Authority, 581 94, Linköping, Sweden
| | - Peter Rådström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Johannes Hedman
- Swedish National Forensic Centre, Swedish Police Authority, 581 94, Linköping, Sweden.
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
21
|
García-Bernalt Diego J, Fernández-Soto P, Crego-Vicente B, Alonso-Castrillejo S, Febrer-Sendra B, Gómez-Sánchez A, Vicente B, López-Abán J, Muro A. Progress in loop-mediated isothermal amplification assay for detection of Schistosoma mansoni DNA: towards a ready-to-use test. Sci Rep 2019; 9:14744. [PMID: 31611563 PMCID: PMC6791938 DOI: 10.1038/s41598-019-51342-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
Schistosomiasis is one of the most prevalent Neglected Tropical Disease, affecting approximately 250 million people worldwide. Schistosoma mansoni is the most important species causing human intestinal schistosomiasis. Despite significant efforts in recent decades, the global disease burden of schistosomiasis remains extremely high. This could partly be attributed to the absence of accurate diagnostic tools, primarily in endemic areas. Loop-mediated isothermal amplification (LAMP) is increasingly used in molecular diagnostics as a field-friendly alternative to many other complex molecular methods and it has been proposed as an ideal candidate for revolutionizing point-of-care molecular diagnostics. In a previous work, a LAMP-based method to detect S. mansoni DNA (SmMIT-LAMP) was developed by our research group for early diagnosis of active schistosomiasis in an experimental infection murine model. The SmMIT-LAMP has been further successfully evaluated in both human stool and snail samples and, recently, in human urine samples. In this study, we developed an important improvement for SmMIT-LAMP molecular assay, transforming it into a cold maintenance dry format suitable for potentially manufacturing as kit for ready-to-use for schistosomiasis diagnosis. This procedure could be applied to create dry LAMP kits for a laboratory setting and for diagnostic applications for other neglected tropical diseases.
Collapse
Affiliation(s)
- J García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - P Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| | - B Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - S Alonso-Castrillejo
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - B Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - A Gómez-Sánchez
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - B Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - J López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - A Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
22
|
Higashi SL, Shibata A, Kitamura Y, Hirosawa KM, Suzuki KGN, Matsuura K, Ikeda M. Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semi-artificial Glycopeptides. Chemistry 2019; 25:11955-11962. [PMID: 31268200 DOI: 10.1002/chem.201902421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Aqueous hybrid soft nanomaterials consisting of plural supramolecular architectures with a high degree of segregation (orthogonal coexistence) and precise hierarchy at the nano- and microscales, which are reminiscent of complex biomolecular systems, have attracted increasing attention. Remarkable progress has been witnessed in the construction of DNA nanostructures obtained by rational sequence design and supramolecular nanostructures of peptide derivatives through self-assembly under aqueous conditions. However, orthogonal self-assembly of DNA nanostructures and supramolecular nanostructures of peptide derivatives in a single medium has not yet been explored in detail. In this study, DNA microspheres, which can be obtained from three single-stranded DNAs, and three different supramolecular nanostructures (helical nanofibers, straight nanoribbons, and flowerlike microaggregates) of semi-artificial glycopeptides were simultaneously constructed in a single medium by a simple thermal annealing process, which gives rise to hybrid soft nanomaterials. Fluorescence imaging with selective staining of each supramolecular nanostructure uncovered the orthogonal coexistence of these structures with only marginal impact on their morphology. Additionally, the biostimuli-responsive degradation propensity of each supramolecular architecture is retained, and this may allow the construction of active soft nanomaterials exhibiting intelligent biofunctions.
Collapse
Affiliation(s)
- Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yoshiaki Kitamura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori, 680-8552, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| |
Collapse
|
23
|
Nair S, Loppnow GR. Comparison of K- Ras and N- Ras Mutagenic Hot Spots for UVC Damage. ACS OMEGA 2019; 4:3469-3475. [PMID: 30873508 PMCID: PMC6410678 DOI: 10.1021/acsomega.8b03017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/01/2019] [Indexed: 05/05/2023]
Abstract
It has been well established that mutations in K-Ras and N-Ras proto-oncogenes can convert them into active oncogenes. Current molecular cancer research has been focused on determining the key steps by which cellular genes become oncogenes and not on the underlying and fundamental chemical damage mechanism and susceptibility to damage. In this study, we investigate the damage hot spots present in the N-Ras and K-Ras genes upon exposure to UVC radiation. Detection of damage is accomplished by a simple, sensitive, mix-and-read assay using an EvaGreen probe in a 96-well microtiter plate. Our results show that, although there is high degree of sequential similarities among K-Ras and N-Ras genes, they show different degrees of UV damage in different portions of their genomes. Our experiments demonstrate that overall, the K-Ras genome is more prone to UVC damage than the N-Ras genome. We observe that the extent of damage increases with increasing number of TTs in a sequence, consistent with previous results that show that thymine cyclobutyl photodimers are the primary DNA damage photoproducts upon UVC irradiation. This understanding of the effect of UVC radiation on various codons of K-Ras and N-Ras genes will help to increase our understanding about hot spots of DNA damage and the chemical damage mechanism.
Collapse
Affiliation(s)
- Sindhu
G. Nair
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Glen R. Loppnow
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- E-mail: . Phone: (780) 492-9704. Fax: (780) 492-8231
| |
Collapse
|
24
|
El-Yazbi AF, Loppnow GR. Probing DNA damage induced by common antiviral agents using multiple analytical techniques. J Pharm Biomed Anal 2018; 157:226-234. [DOI: 10.1016/j.jpba.2018.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
|