1
|
Zhang Q, Li H, Kang Y, Cui Q, Zhang H, Li L. Tunable Fluorescence, Morphology, and Antibacterial Behaviors of Conjugated Oligomers via Host-Guest Supramolecular Self-Assembly. ACS APPLIED BIO MATERIALS 2024; 7:2533-2543. [PMID: 38526040 DOI: 10.1021/acsabm.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Host-guest supramolecular self-assembly has become one facile but efficient way to regulate the optical properties of conjugated oligomers and construct promising photofunctional materials. Herein, we design two linear conjugated oligomers terminated with two or four pyridinium moieties, which show different 1:1 'head-to-tail' binding patterns with cucurbit[8]uril (CB[8]) to form host-guest supramolecules. After being encapsulated in the hydrophobic cavity of the CB[8] host, the fluorescence emission of the conjugated oligomers undergoes significant changes, resulting in tunable fluorescence color with enhanced quantum yields. Triggered by the aggregation of supramolecules, the regular or rigid binding modes lead to the formation of cuboids and spheroids in nanoscale, respectively. Due to the macrocyclic-confinement effect, the light-driven reactive oxygen species (ROS) production of the host-guest complex is increased significantly, thereby improving the photodynamic antibacterial performance toward Staphylococcus aureus (S. aureus).
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hui Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Qianling Cui
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hean Zhang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
2
|
Emissive‐Dye/Cucurbit[n]uril‐Based Fluorescence Probes for Sensing Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
3
|
Chakraborty G. Red emitting fluorogenic dye as an efficient turn-on probe for milk allergen. Int J Biol Macromol 2022; 221:1527-1535. [PMID: 36122782 DOI: 10.1016/j.ijbiomac.2022.09.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
Development of simple, fast and non-destructive technique such as fluorescence based method for the quantification of milk allergens in various dairy products is a highly rewarding task. In this contribution, a red emitting fluorogenic dye, quinaldine red (QR) is reported for the detection and quantification of a milk allergen, beta lactoglobulin (β-LG) in milk and whey matrices, utilizing its high selectivity and sensitivity towards β-LG. Detail spectroscopic investigation reveals that binding of QR to the hydrophobic calyx site of β-LG protein substantially reduces the torsional agility and propensity of TICT state formation of QR, rendering the dye highly fluorescent in nature. This enables estimation of β-LG with LOD 52.1(±0.9) nM in buffer solution and 0.21(±0.01) μM in 5 % bovine milk matrix respectively. Additionally, high selectivity and sensitivity, excellent repeatability, quick response, and emission in the biologically favorable red spectral region make QR based fluorometric quantification of β-LG a highly attractive choice. Finally, the estimated β-LG concentrations in milk and whey matrices from fluorometric titration and densitometry methods are found to match excellently with each other, suggesting potential of QR as an efficient turn-on fluorescent probe for the quantification of β-LG (milk allergen) in various dairy products.
Collapse
Affiliation(s)
- Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| |
Collapse
|
4
|
Chakraborty G, Chittela RK, Jonnalgadda PN, Pal H. Supramolecular modulation in photophysical features of berberine and its application towards ATP sensing. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
|
6
|
Kim BW, Lee H, Keum G, Kim BM. Structure-activity relationship (SAR) studies on the mutagenic properties of 2,7-diaminofluorene and 2,7-diaminocarbazole derivatives. Bioorg Med Chem Lett 2020; 31:127662. [PMID: 33227415 DOI: 10.1016/j.bmcl.2020.127662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/26/2023]
Abstract
We discovered that 2,7-diaminofluorene or 2,7-diaminocarbazole moiety can be employed as a core structure of highly effective NS5A inhibitors that are connected through amide bonds to proline-valine-carbamate motifs. Amide bonds can be easily cleaved via various metabolic pathways upon administration into the body, and metabolites containing 2,7-diaminofluorene and 2,7-diaminocarbazole core structures have been known to be strong mutagens. To avoid the mutagenesis issue of these core structures, we examined various functional groups at the C9 or N9 position of 2,7-diaminofluorene or 2,7-diaminocarbazole, respectively, through the Ames test in TA98 and TA100 mutants of Salmonella typhimurium LT-2. We discovered that, through proper alkyl substitution at the C9 or N9 position, 2,7-diaminofluorene and 2,7-diaminocarbazole moieties can be successfully employed in drug discovery without necessarily causing mutagenicity problems.
Collapse
Affiliation(s)
- Byeong Wook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hwa Lee
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - B Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Pal S, Ghosh TK, Ghosh R, Mondal S, Ghosh P. Recent advances in recognition, sensing and extraction of phosphates: 2015 onwards. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213128] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Singh VR, Singh PK. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution. J Mater Chem B 2020; 8:1182-1190. [PMID: 31957759 DOI: 10.1039/c9tb02403d] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Considering the biological relevance of adenosine triphosphate (ATP) as an "energy currency" in all organisms and significance of its detection in various diseased conditions, enormous efforts have been made to develop selective and sensitive fluorescent sensors for the detection of ATP. However, these developed sensor probes frequently involve technically challenging and time-consuming synthetic protocols for the production of sensor molecules and often suffer from poor solubility in aqueous medium. Another major disadvantage of these developed sensor systems is their single wavelength based operation which makes their performance susceptible to minute changes in experimental conditions. Herein, we report a fluorescence turn-on ratiometric sensor for the detection of ATP which operates by the dissociation of Thioflavin-T-sulphated-β-cyclodextrin supramolecular assembly by Zn2+ followed by ATP induced reassociation of the same. This modulation of the monomer/aggregate equilibrium of the supramolecular assembly followed by subsequent interactions with Zn2+ and ATP acts as an optimal scheme for the ratiometric detection of ATP. Overall this supramolecular ensemble based sensing platform provides a simple, sensitive, selective and label free detection approach for ATP in aqueous solution. Importantly, our sensor platform responds to ATP in the biologically complex media of serum samples suggesting its potential for possible applications in real-life scenarios.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India.
| |
Collapse
|
9
|
Wu G, Bae YJ, Olesińska M, Antón-García D, Szabó I, Rosta E, Wasielewski MR, Scherman OA. Controlling the structure and photophysics of fluorophore dimers using multiple cucurbit[8]uril clampings. Chem Sci 2019; 11:812-825. [PMID: 34123057 PMCID: PMC8146025 DOI: 10.1039/c9sc04587b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A modular strategy has been employed to develop a new class of fluorescent molecules, which generates discrete, dimeric stacked fluorophores upon complexation with multiple cucurbit[8]uril macrocycles. The multiple constraints result in a “static” complex (remaining as a single entity for more than 30 ms) and facilitate fluorophore coupling in the ground state, showing a significant bathochromic shift in absorption and emission. This modular design is surprisingly applicable and flexible and has been validated through an investigation of nine different fluorophore cores ranging in size, shape, and geometric variation of their clamping modules. All fluorescent dimers evaluated can be photo-excited to atypical excimer-like states with elongated excited lifetimes (up to 37 ns) and substantially high quantum yields (up to 1). This strategy offers a straightforward preparation of discrete fluorophore dimers, providing promising model systems with explicitly stable dimeric structures and tunable photophysical features, which can be utilized to study various intermolecular processes. Dimerisation of a wide range of fluorophores through multiple CB[8] clampings leads to constrained intracomplex motion and distinct photophysical properties.![]()
Collapse
Affiliation(s)
- Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Youn Jue Bae
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Magdalena Olesińska
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Daniel Antón-García
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - István Szabó
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Edina Rosta
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Michael R Wasielewski
- Department of Chemistry, Institute for Sustainability and Energy at Northwestern, Northwestern University Evanston Illinois 60208-3113 USA
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
10
|
Olesińska M, Wu G, Gómez-Coca S, Antón-García D, Szabó I, Rosta E, Scherman OA. Modular supramolecular dimerization of optically tunable extended aryl viologens. Chem Sci 2019; 10:8806-8811. [PMID: 31803453 PMCID: PMC6849629 DOI: 10.1039/c9sc03057c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cucurbit[8]uril (CB[8]) mediated assembly of extended aryl viologens (EVs) into optically tunable dimers is reported for the first time.
Cucurbit[8]uril (CB[8]) mediated assembly of extended aryl viologens (EVs) into optically tunable dimers is reported for the first time. We show that the modular design and synthesis of a new class of π-conjugated viologen derivatives with rigid aromatic or heteroaromatic bridging units as well as electron donating molecular recognition motifs enable their self-assembly into 2 : 2 complexes with CB[8]. The quantitative dimerization process involving these two molecular components in an aqueous solution enables excimer-like interactions between closely packed charged guests giving rise to distinct spectroscopic behavior. The nature of these dimers (CB[8]2·(EV[X]R)2) in the ground and excited states was characterized by NMR, isothermal titration calorimetry, and steady-state spectroscopic measurements.
Collapse
Affiliation(s)
- Magdalena Olesińska
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Guanglu Wu
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - Silvia Gómez-Coca
- Department of Chemistry , King's College London , 7 Trinity Street , London , SE1 1DB , UK
| | - Daniel Antón-García
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK
| | - Istvan Szabó
- Department of Chemistry , King's College London , 7 Trinity Street , London , SE1 1DB , UK
| | - Edina Rosta
- Department of Chemistry , King's College London , 7 Trinity Street , London , SE1 1DB , UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
11
|
Hu W, Yang W, Gong T, Zhou W, Zhang Y. Multi-stimuli responsive properties switch by intra- and inter-molecular charge transfer constructed from triphenylamine derivative. CrystEngComm 2019. [DOI: 10.1039/c9ce01217f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The compound TPA-BI exhibited multi-responsive fluorescence behaviors caused by inter-molecular charge transfer (CT) and intra-molecular CT formation.
Collapse
Affiliation(s)
- Wangqin Hu
- School of Chemistry & Chemical Engineering and Material Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Wen Yang
- School of Chemistry & Chemical Engineering and Material Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Tingfeng Gong
- School of Chemistry & Chemical Engineering and Material Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Weiqun Zhou
- School of Chemistry & Chemical Engineering and Material Science
- Soochow University
- Suzhou
- People's Republic of China
| | - Yuhan Zhang
- College of Chemistry
- Northeast Normal University
- Changchun
- China
| |
Collapse
|
12
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|