1
|
Zhang SY, Ding XL, Qu SZ. Effect of External Electric Field on Nitrogen Activation on a Trimetal Cluster. Chemphyschem 2024; 25:e202300961. [PMID: 38850107 DOI: 10.1002/cphc.202300961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Efficient nitrogen (N2) fixation and activation under mild conditions are crucial for modern society. External electric fields (Felectric) can significantly affect N2 activation. In this work, the effect of Felectric on N2 activation by Nb3 clusters supported in a sumanene bowl was studied by density functional theory calculations. Four typical systems at different stages of N-N activation were studied, including two intermediates and two transition states. The impact of Felectric on various properties related to N2 activation was investigated, including the N-N bond length, overlap population density of states (OPDOS), total energy of the system, adsorption energy of N2, decomposition of energy changes, and electron transfer. The sumanene not only functions as a support and protective substrate, but also serves as a donor or acceptor under different Felectric conditions. Negative Felectric is beneficial to N-N bond activation because it promotes electron transfer to the N-N region and improves the d-π* orbital hybridization between metals and N2 in the activation process. Positive Felectric improves d-π* orbital hybridization only when the N-N is nearly dissociated. The microscopic mechanism of Felectric's effects provides insight into N2 activation and theoretical guidance for the design of catalytic reaction conditions for nitrogen reduction reactions (NRR).
Collapse
Affiliation(s)
- Song-Yang Zhang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Sheng-Ze Qu
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| |
Collapse
|
2
|
Kasprzak A. Supramolecular Chemistry of Sumanene. Angew Chem Int Ed Engl 2024; 63:e202318437. [PMID: 38231540 DOI: 10.1002/anie.202318437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Sumanene is a buckybowl molecule that is continuously attracting the attention of the scientific community because of its unique geometrical and physicochemical properties. This Minireview systematically summarizes advances and considerations regarding the applied supramolecular chemistry of sumanene. This work highlights the major fields in which potential or real applications of sumanene molecule have been reported to date, such as the design of sumanene-containing functional supramolecular materials and architectures, sumanene-based drug-delivery systems, or sumanene-tethered ion-selective molecular receptors. An assessment of the current status in the applied supramolecular chemistry of sumanene is provided, together with an emphasis on the key advances being made. Discussion on those milestones that are still to be achieved within this emerging field is also provided.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664, Warsaw, Poland
| |
Collapse
|
3
|
Fan D, Du J, Dang J, Wang C, Mo Y. The strength and selectivity of perfluorinated nano-hoops and buckybowls for anion binding and the nature of anion-π interactions. J Comput Chem 2023; 44:138-148. [PMID: 35147229 DOI: 10.1002/jcc.26820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
Abstract
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5-8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl- , Br- and I- ), and remarkable binding strengths up to -294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.
Collapse
Affiliation(s)
- Dan Fan
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Jingshuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
4
|
Wang YY, Ding XL, Chen Y, Wang MM, Li W, Wang X. Trimetallic clusters in the sumanene bowl for dinitrogen activation. Phys Chem Chem Phys 2022; 24:23265-23278. [PMID: 36156001 DOI: 10.1039/d2cp03346a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is of great importance to find catalysts for the nitrogen reduction reaction (NRR) with high stability and reactivity. A series of M3 clusters (M = Ti, Zr, V, and Nb) supported on sumanene (C21H12) were designed as potential catalysts for the NRR by taking advantage of the high reactivity of trimetallic clusters and the unique geometric and electronic properties of sumanene, a bowl-like organic molecule. Detailed mechanisms of NN bond cleavage on C21H12-M3 were investigated by DFT calculations and compared with those on bare M3 clusters. M3 in the sumanene bowl is very stable with large binding energies, which prohibits the cohesion of M3 into M6. In the bowl, M3 has a (quasi-) equilateral triangle structure with lengthened M-M bonds, which is particularly beneficial to the N2 transfer process on Ti3 and V3 clusters. The N-N bond can be dissociated by both M3 and C21H12-M3 clusters without the overall energy barriers. A blurring effect is found in which some geometric and electronic properties of different metal types become similar when M3 is supported on the substrate. Our work demonstrates that sumanene is a suitable substrate to support M3 in the activation of N2 with enhanced stability and maintained a high level of reactivity compared to bare M3.
Collapse
Affiliation(s)
- Ya-Ya Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Yan Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Meng-Meng Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Wei Li
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China. .,Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China.,Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| |
Collapse
|
5
|
Weber I, Tsuge M, Sundararajan P, Baba M, Sakurai H, Lee YP. Infrared and Laser-Induced Fluorescence Spectra of Sumanene Isolated in Solid para-Hydrogen. J Phys Chem A 2022; 126:5283-5293. [PMID: 35921614 DOI: 10.1021/acs.jpca.2c02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The para-hydrogen (p-H2) matrix-isolation technique has been scarcely used to record electronic absorption and emission spectra. It is expected that its small matrix shifts due to diminished molecular interactions and the softness of the lattice might be advantageous to help identify the carriers of the diffuse interstellar bands. In this article, we present infrared, fluorescence excitation, and dispersed fluorescence spectra of sumanene (C21H12), a bowl-shaped polycyclic aromatic hydrocarbon and a fragment of C60, isolated in solid p-H2. The recorded vibrational wavenumbers from infrared and dispersed fluorescence agree with the scaled harmonic vibrational wavenumbers calculated with the B3PW91/6-311++G(2d,2p) and B3LYP/6-311++G(2d,2p) methods. The recorded fluorescence excitation spectra are consistent with the spectra of jet-cooled gas-phase C21H12 reported previously by Kunishige et al. We found a rather small matrix shift of 55 cm-1 for the S1-S0 electronic transition origin located at 27 888 cm-1. Vibrational wavenumbers associated with the S1 state of C21H12 inferred from the experimental spectrum can be assigned mostly to fundamental normal modes; they are in satisfactory agreement with scaled harmonic vibrational wavenumbers calculated at the TD-B3PW91/6-311++G(2d,2p) level of theory. Significantly more vibrational modes of the S1 state were identified as compared with those in the reported gas-phase work. The potential of p-H2 matrix-isolation spectroscopy to provide electronic excitation spectra suitable for comparison to astronomical observations is discussed by comparing the spectra of C21H12 isolated in solid p-H2 and in solid Ne, a matrix host commonly employed in astrochemistry.
Collapse
Affiliation(s)
- Isabelle Weber
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 3000093, Taiwan
| | - Masashi Tsuge
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Pavithraa Sundararajan
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 3000093, Taiwan
| | - Masaaki Baba
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.,Molecular Photoscience Research Center, Kobe University, Kobe 657-8501, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Osaka 565-0871, Japan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu 3000093, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
6
|
|
7
|
Suresh CH, Remya GS, Anjalikrishna PK. Molecular electrostatic potential analysis: A powerful tool to interpret and predict chemical reactivity. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Geetha S. Remya
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Puthannur K. Anjalikrishna
- Chemical Sciences and Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology Thiruvananthapuram Kerala India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
8
|
Kasprzak A, Tobolska A, Sakurai H, Wróblewski W. Tuning the sumanene receptor structure towards the development of potentiometric sensors. Dalton Trans 2021; 51:468-472. [PMID: 34904597 DOI: 10.1039/d1dt03467g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report for the first time the application of a sumanene derivative in potentiometric recognition of caesium cations. The structure of the sumanene receptor was carefully tuned to obtain its compatibility with polyvinyl chloride plasticized membranes of potentiometric sensors. The developed ion-selective electrodes based on membranes doped with octyloxybenzene sumanene exhibited a near theoretical sensitivity towards caesium cations, with a detection limit of 4 μM Cs+.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| | - Aleksandra Tobolska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland. .,Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, 02-093 Warsaw, Poland
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, 565-0871 Osaka, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Wojciech Wróblewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
9
|
Burrill DJ, Lambrecht DS. Buckybowls as gas adsorbents: binding of gaseous pollutants and their electric-field induced release. Phys Chem Chem Phys 2020; 22:22699-22710. [PMID: 33016282 DOI: 10.1039/d0cp02645j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption of nitric oxide and nitrogen dioxide (NOx) to the Buckybowls sumanene and corannulene was investigated. Binding energies were up to 1.8× larger than for coronene as the planar analogue, demonstrating the advantages of Buckybowls for gas adsorption. In agreement with previous reports on carbon dioxide and methane adsorption, the favorable binding energies for NOx were shown to be associated with the curvature of the Buckybowls. It is shown that applying an electric field along the bowl symmetry axis modifies the bowl curvatures and impacts adsorbate binding energies, including the potential to desorb adsorbates. As a proof of concept, it is shown that applying electric fields of different strengths and orientations selectively controls sumanene's preference to bind nitric oxide, nitrogen dioxide, and carbon dioxide, suggesting potential applications for dynamically tunable gas adsorption. Moreover, it is demonstrated that adsorbates can be desorbed by applying suitable electric field strengths, allowing cleaning of the Buckybowls for renewed usage.
Collapse
Affiliation(s)
- Daniel J Burrill
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
10
|
Anila S, Suresh CH. Formation of large clusters of CO2 around anions: DFT study reveals cooperative CO2 adsorption. Phys Chem Chem Phys 2019; 21:23143-23153. [DOI: 10.1039/c9cp03348c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cooperative O⋯C secondary interactions compensate for the diminishing effect of primary anion⋯C interactions in anionic clusters of CO2 molecules.
Collapse
Affiliation(s)
- Sebastian Anila
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|