1
|
Barzaga R, Lestón-Sánchez L, Aguilar-Galindo F, Estévez-Hernández O, Díaz-Tendero S. Synergy Effects in Heavy Metal Ion Chelation with Aryl- and Aroyl-Substituted Thiourea Derivatives. Inorg Chem 2021; 60:11984-12000. [PMID: 34308640 DOI: 10.1021/acs.inorgchem.1c01068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detection and removal of metal ion contaminants have attracted great interest due to the health risks that they represent for humans and wildlife. Among the proposed compounds developed for these purposes, thiourea derivatives have been shown as quite efficient chelating agents of metal cations and have been proposed for heavy metal ion removal and for components of high-selectivity sensors. Understanding the nature of metal-ionophore activity for these compounds is thus of high relevance. We present a theoretical study on the interaction between substituted thioureas and metal cations, namely, Cd2+, Hg2+, and Pb2+. Two substituent groups have been chosen: 2-furoyl and m-trifluoromethylphenyl. Combining density functional theory simulations with wave function analysis techniques, we study the nature of the metal-thiourea interaction and characterize the bonding properties. Here, it is shown how the N,N'-disubstituted derivative has a strong affinity for Hg2+, through cation-hydrogen interactions, due to its greater oxidizing capacity.
Collapse
Affiliation(s)
- Ransel Barzaga
- Instituto de Ciencia y Tecnología de Materiales, Universidad de La Habana, 10400 La Habana, Cuba.,Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Lucia Lestón-Sánchez
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Aguilar-Galindo
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-San Sebastián, E-20018, Spain
| | | | - Sergio Díaz-Tendero
- Departmento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Institute for Advanced Research in Chemical Science (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Cheng R, Loire E, Martens J, Fridgen TD. An IRMPD spectroscopic and computational study of protonated guanine-containing mismatched base pairs in the gas phase. Phys Chem Chem Phys 2020; 22:2999-3007. [DOI: 10.1039/c9cp06393e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Infrared multiple photon dissociation spectroscopy has been used to probe the structures of the three protonated base-pair mismatches containing 9-ethylguanine (9eG) in the gas phase. Some of these protonated base-pairs have been identified in RNA.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry
- Memorial University
- St. John's
- Canada
| | - Estelle Loire
- Laboratoire Chimie Physique – CLIO
- Campus Universite d’Orsay
- France
| | - Jonathan Martens
- Radboud University
- Institute for Molecules and Materials
- FELIX Laboratory
- Nijmegen
- The Netherlands
| | | |
Collapse
|
3
|
Cheng R, Loire E, Fridgen TD. Hydrogen bonding in alkali metal cation-bound i-motif-like dimers of 1-methyl cytosine: an IRMPD spectroscopic and computational study. Phys Chem Chem Phys 2019; 21:11103-11110. [PMID: 31094375 DOI: 10.1039/c9cp01223k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structures of alkali metal cation bound 1-methylcytosine (1-mCyt) dimers were explored using vibrational spectroscopy in the form of infrared multiple photon dissociation (IRMPD) spectroscopy and by computational methods. For the smaller alkali metal cations, Li+ and Na+, only non-hydrogen bonded symmetric anti-parallel structures were observed in agreement with the lowest energy computed structures. For K+, Rb+, and Cs+ the vibrational spectra in the N-H stretch region showed strong evidence for hydrogen bonding in agreement with the lowest energy structures which contained hydrogen bonding interactions between the amine group of one cytosine and the carbonyl oxygen of the other cytosine. The lowest energy structures for these complexes were compared to previously studied cytosine complexes [(Cyt)2M]+ where M = Li, Na, and K. The calculations are in agreement that only the non-hydrogen bonded structures would be observed for these cytosine complexes.
Collapse
Affiliation(s)
- Ruodi Cheng
- Department of Chemistry, Memorial University, St. John's, NL A1B 3 × 7, Canada.
| | - Estelle Loire
- Laboratoire Chimie Physique - CLIO, Batiment 201, Porte 2, Campus Universite d'Orsay, 91405, France
| | - Travis D Fridgen
- Department of Chemistry, Memorial University, St. John's, NL A1B 3 × 7, Canada.
| |
Collapse
|
4
|
Linford BD, Le Donne A, Scuderi D, Bodo E, Fridgen TD. Strong intramolecular hydrogen bonding in protonated β-methylaminoalanine: A vibrational spectroscopic and computational study. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:133-141. [PMID: 30563367 DOI: 10.1177/1469066718791998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The gas-phase structure of protonated β-methylaminoalanine was investigated using infrared multiple photon dissociation spectroscopy in the C-H, N-H, O-H stretching region (2700-3800 cm-1) and the fingerprint region (1000-1900 cm-1). Calculations using density functional theory methods show that the lowest energy structures prefer protonation of the secondary amine. Formation of hydrogen bonds between the primary and secondary amine, and the secondary amine and carboxylic oxygen further stabilize the lowest energy structure. The infrared spectrum of the lowest energy structure originating with harmonic density functional theory has features that generally match the positions of the experimental spectra; however, the overall agreement with the experimental spectrum is poor. Molecular dynamics calculations were used to generate a gas-phase infrared spectrum. With these calculations a reasonable match with the experimental spectrum, especially in the high-energy region, was obtained. The results of the molecular dynamics simulation support the density functional theory calculations, with protonation of the secondary amine and the formation of a hydrogen bond between the protonated secondary amine and the primary amine. This work shows the importance of accounting for anharmonic effects in systems with very strong intramolecular hydrogen bonding.
Collapse
Affiliation(s)
- Bryan D Linford
- 1 Department of Chemistry, Memorial University, St John's, Canada
| | - Andrea Le Donne
- 2 Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, Roma, Italy
| | - Debora Scuderi
- 3 Laboratoire de Chimie Physique d'Orsay, Faculté des Sciences, Université Paris Sud, Orsay Cedex, France
| | - Enrico Bodo
- 2 Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, Roma, Italy
| | - Travis D Fridgen
- 1 Department of Chemistry, Memorial University, St John's, Canada
| |
Collapse
|