1
|
Abe K, Atkinson PS, Cheung CS, Liang H, Goehring L, Inasawa S. Dynamics of drying colloidal suspensions, measured by optical coherence tomography. SOFT MATTER 2024; 20:2381-2393. [PMID: 38376422 DOI: 10.1039/d3sm01560b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Colloidal suspensions are the basis of a wide variety of coatings, prepared as liquids and then dried into solid films. The processes at play during film formation, however, are difficult to observe directly. Here, we demonstrate that optical coherence tomography (OCT) can provide fast, non-contact, precise profiling of the dynamics within a drying suspension. Using a scanning Michelson interferometer with a broadband laser source, OCT creates cross-sectional images of the optical stratigraphy of a sample. With this method, we observed the drying of colloidal silica in Hele-Shaw cells with 10 μm transverse and 1.8 μm depth resolution, over a 1 cm scan line and a 15 s sampling period. The resulting images were calibrated to show how the concentration of colloidal particles varied with position and drying time. This gives access to important transport properties, for example, of how collective diffusion depends on particle concentration. Looking at early-time behaviours, we also show how a drying front initially develops, and how the induction time before the appearance of a solid film depends on the balance of diffusion and evaporation-driven motion. Pairing these results with optical microscopy and particle tracking techniques, we find that film formation can be significantly delayed by any density-driven circulation occurring near the drying front.
Collapse
Affiliation(s)
- Kohei Abe
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tan-cha, Onna, Kunigami, Okinawa, 904-0497, Japan
| | - Patrick Saul Atkinson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Chi Shing Cheung
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Haida Liang
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Susumu Inasawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Japan.
| |
Collapse
|
2
|
Xu J, Wang Z, Chu HCW. Unidirectional drying of a suspension of diffusiophoretic colloids under gravity. RSC Adv 2023; 13:9247-9259. [PMID: 36950706 PMCID: PMC10026375 DOI: 10.1039/d3ra00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Recent experiments (K. Inoue and S. Inasawa, RSC Adv., 2020, 10, 15763-15768) and simulations (J.-B. Salmon and F. Doumenc, Phys. Rev. Fluids, 2020, 5, 024201) demonstrated the significant impact of gravity on unidirectional drying of a colloidal suspension. However, under gravity, the role of colloid transport induced by an electrolyte concentration gradient, a mechanism known as diffusiophoresis, is unexplored to date. In this work, we employ direct numerical simulations and develop a macrotransport theory to analyze the advective-diffusive transport of an electrolyte-colloid suspension in a unidirectional drying cell under the influence of gravity and diffusiophoresis. We report three key findings. First, drying a suspension of solute-attracted diffusiophoretic colloids causes the strongest phase separation and generates the thinnest colloidal layer compared to non-diffusiophoretic or solute-repelled colloids. Second, when colloids are strongly solute-repelled, diffusiophoresis prevents the formation of colloid concentration gradient and hence gravity has a negligible effect on colloidal layer formation. Third, our macrotransport theory predicts new scalings for the growth of the colloidal layer. The scalings match with direct numerical simulations and indicate that the colloidal layer produced by solute-repelled diffusiophoretic colloids could be an order of magnitude thicker compared to non-diffusiophoretic or solute-attracted colloids. Our results enable tailoring the separation of colloid-electrolyte suspensions by tuning the interactions between the solvent, electrolyte, and colloids under Earth's or microgravity, which is central to ground-based and in-space applications.
Collapse
Affiliation(s)
- Jinjie Xu
- Department of Chemical Engineering, University of Florida Gainesville FL 32611 USA
| | - Zhikui Wang
- Department of Chemical Engineering, University of Florida Gainesville FL 32611 USA
| | - Henry C W Chu
- Department of Chemical Engineering, University of Florida Gainesville FL 32611 USA
| |
Collapse
|
3
|
Bacchin P, Leng J, Salmon JB. Microfluidic Evaporation, Pervaporation, and Osmosis: From Passive Pumping to Solute Concentration. Chem Rev 2021; 122:6938-6985. [PMID: 34882390 DOI: 10.1021/acs.chemrev.1c00459] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evaporation, pervaporation, and forward osmosis are processes leading to a mass transfer of solvent across an interface: gas/liquid for evaporation and solid/liquid (membrane) for pervaporation and osmosis. This Review provides comprehensive insight into the use of these processes at the microfluidic scales for applications ranging from passive pumping to the screening of phase diagrams and micromaterials engineering. Indeed, for a fixed interface relative to the microfluidic chip, these processes passively induce flows driven only by gradients of chemical potential. As a consequence, these passive-transport phenomena lead to an accumulation of solutes that cannot cross the interface and thus concentrate solutions in the microfluidic chip up to high concentration regimes, possibly up to solidification. The purpose of this Review is to provide a unified description of these processes and associated microfluidic applications to highlight the differences and similarities between these three passive-transport phenomena.
Collapse
Affiliation(s)
- Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Jacques Leng
- CNRS, Solvay, LOF, UMR 5258, Université de Bordeaux, 33600 Pessac, France
| | | |
Collapse
|
4
|
Inoue K, Inasawa S. Drying-induced back flow of colloidal suspensions confined in thin unidirectional drying cells. RSC Adv 2020; 10:15763-15768. [PMID: 35493636 PMCID: PMC9052441 DOI: 10.1039/d0ra02837a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
A clear back flow was observed in the thin unidirectional drying cell of a colloidal suspension. Flow around the colloidal-particle packing front was more complex than expected, even though a colloidal suspension was confined in a narrow space with a submillimeter-scale or shorter gap height. We propose that an increase in particle concentration around the packing front induces downward flow, which is the origin for back flow inside the cell. A mathematical model, which considered both a drying induced horizontal flow and a circulation flow caused by a concentration gradient of particles, showed a reasonable agreement with experimental data for the width of the back-flow region. The concentration gradient of particles was not negligible and it generated a rather complicated flow even in a thin drying liquid film.
Collapse
Affiliation(s)
- Kai Inoue
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology 2-24-16 Nakacho, Koganei Tokyo 184-8588 Japan +81-42-388-7798 +81-42-388-7105
| | - Susumu Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology 2-24-16 Nakacho, Koganei Tokyo 184-8588 Japan +81-42-388-7798 +81-42-388-7105
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology 2-24-16 Nakacho, Koganei Tokyo 184-8588 Japan
| |
Collapse
|
5
|
Sui J. Transport dynamics of charged colloidal particles during directional drying of suspensions in a confined microchannel. Phys Rev E 2019; 99:062606. [PMID: 31330699 DOI: 10.1103/physreve.99.062606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 06/10/2023]
Abstract
Directional drying of colloidal suspensions, experimentally observed to exhibit mechanical instabilities, is a nonequilibrium procedure that is susceptible to geometric confinement and the properties of colloidal particles. Here, we develop an advection-diffusion model to characterize the transport dynamics for unidirectional drying of a suspension consisting of charged particles in a confined Hele-Shaw cell. We consider the electrostatic interactions by means of the Poisson-Boltzmann cell approach with the viscous flow confined to the cell. By solving the nonequilibrium transport equations, we clarify how the multiple parameters, such as drying rate, confinement ratio, and the monovalent slat concentration, affect the transport dynamics of charged colloidal particles. We find that the drying front recedes into the cell with linear behavior, while the liquid-solid transition front recedes with power law behaviors. The faster evaporation rate creates a rapid formation of the drying front and produces a thinner transition layer. We show that confinement is equivalent to raising the effective concentration in the cell, and, accordingly, the drying front appears earlier and grows more rapidly. Under geometric confinement, a longer fully dried film is created while the total drying time is shortened. Moreover, we have theoretically illustrated that low salt loadings cause a large collective diffusivity of charged colloidal particles, which results in a colloidal network by aggregation. Thus, the drying behavior alters dramatically as salt loadings decrease, since the resulting compacted clusters of charged particles eventually convert the suspension into a gel-like material instead of a simple fluid. Our model is consistent with the current experiments and provides a simple insight for applications in directional solidification and microfluidics.
Collapse
Affiliation(s)
- Jize Sui
- Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China and School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
6
|
Mizuguchi T, Inasawa S. Flow of condensed particles around a packing front visualized by drying colloidal suspensions on a tilted substrate. SOFT MATTER 2019; 15:4019-4025. [PMID: 31041983 DOI: 10.1039/c9sm00280d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A gravity effect was demonstrated for 10 nm particles drying in colloidal suspensions. The particles were well-dispersed and did not sediment. However, when a suspension was dried on a tilted directional cell, a clear downward flow of particles was observed around the packing front, which was the boundary between the packed particles layer and the suspension. Three particle sizes (10-110 nm) were examined, with the most pronounced effect being on the 10 nm particles. The primary origin of the downflow was attributed to condensation of particles near the packing front and the subsequent increase in the overall density of the condensed layer. Because of the flow, the packing front was not parallel to the drying interface and tilted cracks formed in the packed layer. A mathematical model was proposed that considered conservation of the suspended particles in the condensed layer. Three competing factors of particle transport (advection, particle consumption by packing, and particle transport by the downward flow) were used to explain the experimental results. Overall, the results suggested that simple substrate tilting would be useful to evaluate whether suspended particles are easily packed or not during drying.
Collapse
Affiliation(s)
- Takuho Mizuguchi
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | | |
Collapse
|
7
|
Drying of pickering emulsions in a viscoelastic network of cellulose microfibrils. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|