1
|
Luo G, Li J, Chen S, Yuan Z, Sun Z, Lou T, Chen Z, Liu H, Zhou C, Fan C, Ruan H. Polylactic acid electrospun membranes coated with chiral hierarchical-structured hydroxyapatite nanoplates promote tendon healing based on a macrophage-homeostatic modulation strategy. Bioact Mater 2025; 47:460-480. [PMID: 40034408 PMCID: PMC11872693 DOI: 10.1016/j.bioactmat.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Tendon injury is a common and challenging problem in the motor system that lacks an effective treatment, affecting daily activities and lowering the quality of life. Limited tendon regenerative capability and immune microenvironment dyshomeostasis are considered the leading causes hindering tendon repair. The chirality of biomaterials was proved to dictate immune microenvironment and dramatically affect tissue repair. Herein, chiral hierarchical structure hydroxylapatite (CHAP) nanoplates are innovatively synthesized for immunomodulatory purposes and further coated onto polylactic acid electrospinning membranes to achieve long-term release for tendon regeneration adaption. Notably, levorotatory-chiral HAP (L-CHAP) nanoplates rather than dextral-chiral or racemic-chiral exhibit good biocompatibility and bioactivity. In vitro experiments demonstrate that L-CHAP induces macrophage M2 polarization by enhancing macrophage efferocytosis, which alleviates inflammatory damage to tendon stem cells (TDSCs) through downregulated IL-17-NF-κB signaling. Meanwhile, L-CHAP-mediated macrophage efferocytosis also promotes TDSCs proliferation and tenogenic differentiation. By establishing a rat model of Achilles tendon injury, L-CHAP was demonstrated to comprehensively promoting tendon repair by enhancing macrophage efferocytosis and M2 polarization in vivo, finally leading to improvement of tendon ultrastructural and mechanical properties and motor function. This novel strategy highlights the role of L-CHAP in tendon repair and thus provides a promising therapeutic strategy for tendon injury.
Collapse
Affiliation(s)
- Gang Luo
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Zhengqiang Yuan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Tengfei Lou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Zhenyu Chen
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Chao Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| | - Hongjiang Ruan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai, PR China
| |
Collapse
|
2
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
3
|
Voigt J, Baljozović M, Martin K, Wäckerlin C, Avarvari N, Ernst KH. An aperiodic chiral tiling by topological molecular self-assembly. Nat Commun 2025; 16:83. [PMID: 39747821 PMCID: PMC11696205 DOI: 10.1038/s41467-024-55405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Studying the self-assembly of chiral molecules in two dimensions offers insights into the fundamentals of crystallization. Using scanning tunneling microscopy, we examine an uncommon aggregation of polyaromatic chiral molecules on a silver surface. Dense packing is achieved through a chiral triangular tiling of triads, with N and N ± 1 molecules at the edges. The triangles feature a random distribution of mirror-isomers, with a significant excess of one isomer. Chirality at the domain boundaries causes a lateral shift, producing three distinct topological defects where six triangles converge. These defects partially contribute to the formation of supramolecular spirals. The observation of different equal-density arrangements suggests that entropy maximization must play a crucial role. Despite the potential for regular patterns, all observed tiling is aperiodic. Differences from previously reported aperiodic molecular assemblies, such as Penrose tiling, are discussed. Our findings demonstrate that two-dimensional molecular self-assembly can be governed by topological constraints, leading to aperiodic tiling induced by intermolecular forces.
Collapse
Affiliation(s)
- Jan Voigt
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Miloš Baljozović
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Kévin Martin
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000, Angers, France
| | - Christian Wäckerlin
- Laboratory for X-ray Nanoscience and Technologies, Paul-Scherrer-Institut (PSI), CH-5232, Villigen PSI, Switzerland
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL) Station 3, CH-1015, Lausanne, Switzerland
| | - Narcis Avarvari
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000, Angers, France.
| | - Karl-Heinz Ernst
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
- Nanosurf Lab, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic.
- Department of Chemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
4
|
Heiner BR, Handy KM, Devlin AM, Soucek JL, Pittsford AM, Turner DA, Petersen JP, Oliver AG, Corcelli SA, Kandel SA. Enantiopure molecules form apparently racemic monolayers of chiral cyclic pentamers. Phys Chem Chem Phys 2024; 26:25430-25438. [PMID: 39319688 DOI: 10.1039/d4cp02094d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Ultra-high vacuum scanning tunneling microscopy (UHV-STM) was used to investigate two related molecules pulse-deposited onto Au(111) surfaces: indoline-2-carboxylic acid and proline (pyrrolidine-2-carboxylic acid). Indoline-2-carboxylic acid and proline form both dimers and C5-symmetric "pinwheel" pentamers. Enantiomerically pure S-(-)-indoline-2-carboxylic acid and S-proline were used, and the pentamer structures observed for both were chiral. However, the presence of apparently equal numbers of 'right-' and 'left-handed' pinwheels is contrary to the general understanding that the chirality of the molecule dictates supramolecular chirality. A variety of computational methods were used to elucidate pentamer geometry for S-proline. Straightforward geometry optimization proved difficult, as the size of the cluster and the number of possible intermolecular interactions produced an interaction potential with multiple local minima. Instead, the Amber force field was used to exhaustively search all of phase space for chemically reasonable pentamer structures, producing a limited number of candidate structures that were then optimized as gas-phase clusters using density functional theory (DFT). The binding energies of the two lowest-energy pentamers on the Au(111) surface were then calculated by plane-wave DFT using the VASP software, and STM images predicted. These calculations indicate that the right- and left-handed pentamers are instead two different polymorphs.
Collapse
Affiliation(s)
- Benjamin R Heiner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Kaitlyn M Handy
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Angela M Devlin
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE 68179, USA
| | - Jewel L Soucek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alexander M Pittsford
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - S Alex Kandel
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
5
|
Liao H, Pan H, Yao J, Zhu R, Bao W. Essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase for production of meso-tartaric acid. Biotechnol Lett 2024; 46:739-749. [PMID: 38740717 DOI: 10.1007/s10529-024-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/17/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVES This study aimed to discuss the essential amino acid residues and catalytic mechanism of trans-epoxysuccinate hydrolase from Pseudomonas koreensis for the production of meso-tartaric acid. RESULTS The optimum conditions of the enzyme were 45 °C and pH 9.0, respectively. It was strongly inhibited by Zn2+, Mn2+ and SDS. Michaelis-Menten enzyme kinetics analysis gave a Km value of 3.50 mM and a kcat of 99.75 s-1, with an exceptional EE value exceeding 99.9%. Multiple sequence alignment and homology modeling revealed that the enzyme belonged to MhpC superfamily and possessed a typical α/β hydrolase folding structure. Site-directed mutagenesis indicated H34, D104, R105, R108, D128, Y147, H149, W150, Y211, and H272 were important catalytic residues. The 18O-labeling study suggested the enzyme acted via two-step catalytic mechanism. CONCLUSIONS The structure and catalytic mechanism of trans-epoxysuccinate hydrolase were first reported. Ten residues were critical for its catalysis and a two-step mechanism by an Asp-His-Asp catalytic triad was proposed.
Collapse
Affiliation(s)
- Hongxiu Liao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | | | - Jinfeng Yao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ronglin Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wenna Bao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
- Zhejiang Provincial Key Laboratory for Chemical and Biological Processing Technology of Farm Products, Hangzhou, 310023, China.
| |
Collapse
|
6
|
Ozawa Y, Hashimoto S, Sato Y, Sato K, Yokoyama T, Machida Y, De Feyter S, Tobe Y, Tahara K. Adsorption of Prochiral Solvent Molecules by Surface-Confined Chiral Supramolecular Assemblies: How Solvent Impacts on-Surface Chirality. Chemistry 2024; 30:e202401885. [PMID: 38977428 DOI: 10.1002/chem.202401885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
The understanding of supramolecular chirality in self-assembled molecular networks (SAMNs) on surfaces generates a lot of interest because of its relation to the production of chiral sensors, reactors, and catalysts. We herein report the adsorption of a prochiral solvent molecule in porous SAMNs formed by a chiral dehydrobenzo[12]annulene (cDBA) derivative. Through the prochirality recognition of a solvent molecule, the supramolecular chirality of the SAMN is switched: the cDBA exclusively forms a counter-clockwise pore through co-adsorption of the solvent molecule in prochiral 1,2,4-trichlorobenzene, while in 1-phenyloctane it produces the opposite chiral, clockwise pore. The prochirality recognition of the solvent molecule in the chiral SAMN pores is attributed to the adaptable conformational changes of the chiral chains of the cDBA molecule.
Collapse
Affiliation(s)
- Yu Ozawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Hashimoto
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yuta Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takumi Yokoyama
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yoshihito Machida
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Yoshito Tobe
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
7
|
Ernst KH. Helicenes on Surfaces: Stereospecific On-Surface Chemistry, Single Enantiomorphism, and Electron Spin Selectivity. Chirality 2024; 36:e23706. [PMID: 39077832 DOI: 10.1002/chir.23706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Helicenes represent an important class of chiral organic material with promising optoelectronic properties. Hence, functionalization of surfaces with helicenes is a key step towards new organic material devices. This review presents different aspects of adsorption and modification of metal surfaces with different helicene species. Topics addressed are chiral crystallization, that is, 2D conglomerate versus racemate crystallization, breaking of mirror-symmetry in racemates, chirality-induced spin selectivity, and stereoselective on-surface chemistry.
Collapse
Affiliation(s)
- Karl-Heinz Ernst
- Molecular Surface Science, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
- Nanosurf Lab, Institute of Physics of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Chemistry, University of Zurich, Zürich, Switzerland
| |
Collapse
|
8
|
Maeda M, De Feyter S, Tahara K. Chiral Solvent-Induced Homochiral Hierarchical Molecular Assemblies at the Liquid/Solid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15071-15079. [PMID: 38982679 DOI: 10.1021/acs.langmuir.4c01430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We herein investigate the formation of homochiral hierarchical self-assembled molecular networks (SAMNs) via chirality induction by the coadsorption of a chiral solvent at the liquid/graphite interface by means of scanning tunneling microscopy (STM). In a mixture of achiral solvents, 1-hexanoic acid, and 1,2,4-trichlorobenzene, an achiral dehydrobenzo[12]annulene (DBA) derivative with three alkoxy and three hydroxy groups in an alternating manner forms chiral hierarchical triangular cluster structures through dynamic self-sorting. Enantiomorphous domains appear in equal probability. On the other hand, in chiral 2-methyl-1-hexanoic acid as a solvent, this molecule produces (i) homochiral small triangular clusters at a low solute concentration, (ii) a chirality-biased hierarchical structure consisting of triangular cluster structures with different cluster sizes at a medium concentration, and (iii) a dense structure with no chirality bias at a high concentration. We attribute the concentration-dependent degree of the chirality transmission to the number of coadsorbed solvent molecules in the SAMNs and to the difference in nucleus structure and size in the initial stage of the SAMN formation.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, Leuven 3001, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
9
|
Kojima T, Xie C, Sakaguchi H. On-Surface Fabrication toward Polar 2D Macromolecular Crystals. Chempluschem 2024; 89:e202300775. [PMID: 38439510 DOI: 10.1002/cplu.202300775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Polar 2D macromolecular structures have attracted significant attention because of their ferroelectricity and ferro-magnetism. However, it is challenging to synthesize them experimentally because dipoles or spins of these macromolecules tend to cancel each other. So far, there has been no successful strategy for assembling macromolecules in a unidirectional manner, achieving stereoregular polymerization on metal surfaces, and creating polar 2D polymer crystals. Recent progress in molecular assembly, on-surface polymer synthesis, and direct control of molecules using electric field applications provides an opportunity to develop such strategies. In this regard, we first review past studies on chiral and achiral molecular assembly, on-surface polymer synthesis, and orientation control of polar molecules. Then, we discuss our newly developed approach called "vectorial on-surface synthesis", which is based on "dynamic chirality" of compass precursors, stereoselective polymerization, and favorable interchain interactions originating from CH-π interactions. Finally, we conclude with a prospective outlook.
Collapse
Affiliation(s)
- Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Cong Xie
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| | - Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
10
|
Zhang Y, Ma Y, Sun W, Li W, Li G. Structural and Electronic Chirality in Inorganic Crystals: from Construction to Application. Chemistry 2024; 30:e202400436. [PMID: 38571318 DOI: 10.1002/chem.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
Chirality represents a fundamental characteristic inherent in nature, playing a pivotal role in the emergence of homochirality and the origin of life. While the principles of chirality in organic chemistry are well-documented, the exploration of chirality within inorganic crystal structures continues to evolve. This ongoing development is primarily due to the diverse nature of crystal/amorphous structures in inorganic materials, along with the intricate symmetrical and asymmetrical relationships in the geometry of their constituent atoms. In this review, we commence with a summary of the foundational concept of chirality in molecules and solid states matters. This is followed by an introduction of structural chirality and electronic chirality in three-dimensional and two-dimensional inorganic materials. The construction of chirality in inorganic materials is classified into physical photolithography, wet-chemistry method, self-assembly, and chiral imprinting. Highlighting the significance of this field, we also summarize the research progress of chiral inorganic materials for applications in optical activity, enantiomeric recognition and chiral sensing, selective adsorption and enantioselective separation, asymmetric synthesis and catalysis, and chirality-induced spin polarization. This review aims to provide a reference for ongoing research in chiral inorganic materials and potentially stimulate innovative strategies and novel applications in the realm of chirality.
Collapse
Affiliation(s)
- Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Yuzhe Ma
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Wei Li
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
11
|
Peng X, Zhang Y, Liu X, Qian Y, Ouyang Z, Kong H. From Short- to Long-Range Chiral Recognition on Surfaces: Chiral Assembly and Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307171. [PMID: 38054810 DOI: 10.1002/smll.202307171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/13/2023] [Indexed: 12/07/2023]
Abstract
Research on chiral behaviors of small organic molecules at solid surfaces, including chiral assembly and synthesis, can not only help unravel the origin of the chiral phenomenon in biological/chemical systems but also provide promising strategies to build up unprecedented chiral surfaces or nanoarchitectures with advanced applications in novel nanomaterials/nanodevices. Understanding how molecular chirality is recognized is considered to be a mandatory basis for such studies. In this review, a series of recent studies in chiral assembly and synthesis at well-defined metal surfaces under ultra-high vacuum conditions are outlined. More importantly, the intrinsic mechanisms of chiral recognition are highlighted, including short/long-range chiral recognition in chiral assembly and two main strategies to steer the reaction pathways and modulate selective synthesis of specific chiral products on surfaces.
Collapse
Affiliation(s)
- Xinchen Peng
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinhui Zhang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Yinyue Qian
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zuoling Ouyang
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
12
|
Tessari Z, Rinkovec T, De Feyter S. Chiral induction in substrate-supported self-assembled molecular networks under nanoconfinement conditions. NANOSCALE ADVANCES 2024; 6:892-901. [PMID: 38298576 PMCID: PMC10825934 DOI: 10.1039/d3na00894k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
Self-assembly on surfaces often produces chiral networks, even when starting from achiral building blocks. However, when achiral molecules are used to produce chiral networks, two possible enantiomorphs are created with equal probability, rendering therefore the overall surface achiral. This outcome can be changed by finding a way to promote the preferential formation of one of the two enantiomorphs. In this regard, the creation of nanoconfined space, which has been called molecular corral, having a chosen orientation with respect to the substrate symmetry has been demonstrated to be a valid way to obtain the preferential self-assembly of a network having a determined chirality. In this study we aim to further expand the understanding of the principles of such mechanism, in particular by looking at unexplored parameters that could have a role in the production of the observed bias. In this way a deeper comprehension of the mechanisms at the base of the chiral self-assembly could be obtained.
Collapse
Affiliation(s)
- Zeno Tessari
- Division of Molecular Imaging and Photonics, Department of Chemistry KU Leuven, Celestijnenlaan 200 F 3001 Leuven Belgium
| | - Tamara Rinkovec
- Division of Molecular Imaging and Photonics, Department of Chemistry KU Leuven, Celestijnenlaan 200 F 3001 Leuven Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry KU Leuven, Celestijnenlaan 200 F 3001 Leuven Belgium
| |
Collapse
|
13
|
Hu T, Minoia A, Velpula G, Ryskulova K, Van Hecke K, Lazzaroni R, Mali KS, Hoogenboom R, De Feyter S. From One-Dimensional Disordered Racemate to Ordered Racemic Conglomerates through Metal-Coordination-Driven Self-Assembly at the Liquid-Solid Interface. Chemistry 2024; 30:e202302545. [PMID: 37840008 DOI: 10.1002/chem.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
In recent years, there has been significant focus on investigating and controlling chiral self-assembly, specifically in the context of enantiomeric separation. This study explores the self-assembly behavior of 4-dodecyl-3,6-di(2-pyridyl)pyridazine (DPP-C12) at the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG) using a combination of scanning tunneling microscopy (STM) and multiscale molecular modeling. The self-assembled monolayer structure formed by DPP-C12 is periodic in one direction, but aperiodic in the direction orthogonal to it. These structures resemble 1D disordered racemic compounds. Upon introducing palladium [Pd(II)] ions, complexing with DPP-C12, these 1D disordered racemic compounds spontaneously transform into 2D racemic conglomerates, which is rationalized with the assistance of force-field simulations. Our findings provide insights into the regulation of two-dimensional chirality.
Collapse
Affiliation(s)
- Tianze Hu
- KU Leuven, Division of Molecular Imaging and Photonics, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Gangamallaiah Velpula
- KU Leuven, Division of Molecular Imaging and Photonics, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Kanykei Ryskulova
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281 S3, 9000, Ghent, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Kunal S Mali
- KU Leuven, Division of Molecular Imaging and Photonics, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - Steven De Feyter
- KU Leuven, Division of Molecular Imaging and Photonics, Department of Chemistry, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
14
|
Liang K, Ristow F, Li K, Pittrich J, Fehn N, Dörringer L, Heiz U, Kienberger R, Pescitelli G, Iglev H, Kartouzian A. Negative Nonlinear CD-ee Dependence in Polycrystalline BINOL Thin Films. J Am Chem Soc 2023; 145:27933-27938. [PMID: 38088870 DOI: 10.1021/jacs.3c12253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Generally, the relationship between the observed circular dichroism and the enantiomeric excess in chiral systems (CD-ee dependence) is linear. While positive nonlinear behavior has often been reported in the past, examples of negative nonlinear (NN) behavior in CD-ee dependence are rare and not well understood. Here, we present a strong NN CD-ee dependence within polycrystalline thin films of BINOL by using second-harmonic-generation circular dichroism (SHG-CD) and commercial CD spectroscopy studies. Theoretical calculations, microscopy, and FTIR studies are employed to further clarify the underlying cause of this observation. This behavior is attributed to the changing supramolecular chirality of the system. Systems exhibiting NN CD-ee dependence hold promise for highly accurate enantiomeric excess characterization, which is essential for the refinement of enantio-separating and -purifying processes in pharmaceuticals, asymmetric catalysis, and chiral sensing. Our findings suggest that a whole class of single-species systems, i.e., racemate crystals, might possess NN CD-ee dependence and thus provide us a vast playground to better understand and exploit this phenomenon.
Collapse
Affiliation(s)
- Kevin Liang
- Catalysis Research Center and School of Natural Sciences, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Florian Ristow
- Physik-Department E11 and School of Natural Sciences, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Kevin Li
- Catalysis Research Center and School of Natural Sciences, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Johannes Pittrich
- Physik-Department E11 and School of Natural Sciences, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Natalie Fehn
- Catalysis Research Center and School of Natural Sciences, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Lukas Dörringer
- Physik-Department E11 and School of Natural Sciences, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Ueli Heiz
- Catalysis Research Center and School of Natural Sciences, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Reinhard Kienberger
- Physik-Department E11 and School of Natural Sciences, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, I-56124 Pisa, Italy
| | - Hristo Iglev
- Physik-Department E11 and School of Natural Sciences, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Aras Kartouzian
- Catalysis Research Center and School of Natural Sciences, Chair of Physical Chemistry, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
15
|
Rajak A, Das A. Cascade Energy Transfer and White-Light Emission in Chirality-Controlled Crystallization-Driven Two-Dimensional Co-assemblies from Donor and Acceptor Dye-Conjugated Polylactides. Angew Chem Int Ed Engl 2023; 62:e202314290. [PMID: 37842911 DOI: 10.1002/anie.202314290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA, which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene (PY) and naphthalene monoimide (NMI), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs (PY-PLLA and NMI-PLLA) labeled with the same FRET pair.
Collapse
Affiliation(s)
- Aritra Rajak
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Anindita Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
16
|
Ahsan A, Wang X, Sk R, Heydari M, Buimaga-Iarinca L, Wäckerlin C, Lucenti E, Decurtins S, Cariati E, Jung TA, Aschauer U, Liu SX. Self-Assembly of N-Rich Triimidazoles on Ag(111): Mixing the Pleasures and Pains of Epitaxy and Strain. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:23000-23009. [PMID: 38053624 PMCID: PMC10694807 DOI: 10.1021/acs.jpcc.3c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Indexed: 12/07/2023]
Abstract
In the present report, homochiral hydrogen-bonded assemblies of heavily N-doped (C9H6N6) heterocyclic triimidazole (TT) molecules on an Ag(111) substrate were investigated using scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) techniques. The planar and prochiral TT molecules, which exhibit a threefold rotation symmetry and lack mirror symmetry when assembled on the substrate, carry multiple hydrogen-bonding donor and acceptor functionalities, inevitably leading to the formation of hexameric two-dimensionally extended assemblies that can be either homo- (RR/SS) or heterochiral (RS). Experimental STM data showing well-ordered homochiral domains and experimental LEED data are consistent with simulations assuming the R19.1° overlayer on the Ag(111) lattice. Importantly, we report the unexpected coincidence of spontaneous resolution with the condensation of neighboring islands in adjacent "Janus pairs". The islands are connected by a characteristic fault zone, an observation that we discuss in the context of the fairly symmetric molecule and its propensity to compromise and benefit from interisland bonding at the expense of lattice mismatches and strain in the defect zone. We relate this to the close to triangular shape and the substantial but weak bonding scheme beyond van der Waals (vdW) of the TT molecules, which is due to the three N-containing five-membered imidazole rings. Density functional theory (DFT) calculations show clear energetic differences between homochiral and heterochiral pairwise interactions, clearly supporting the experimental results.
Collapse
Affiliation(s)
- Aisha Ahsan
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Xing Wang
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Rejaul Sk
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Mehdi Heydari
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Luiza Buimaga-Iarinca
- National
Institute for Research and Development of Isotopic and Molecular Technologies
(INCDTIM), Donat Str., Cluj-Napoca 67-103, Romania
| | - Christian Wäckerlin
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Institute
of Physics, École Polytechnique Fédérale de Lausanne Station 3, Lausanne 1015, Switzerland
| | - Elena Lucenti
- Institute
of Chemical Sciences and Technologies “Giulio Natta”
(SCITEC) of CNR, via Golgi 19, Milano 20133, Italy
| | - Silvio Decurtins
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| | - Elena Cariati
- Institute
of Chemical Sciences and Technologies “Giulio Natta”
(SCITEC) of CNR, via Golgi 19, Milano 20133, Italy
- Department
of Chemistry, Università degli Studi di Milano and INSTM RU Via Golgi 19, Milano 20133, Italy
| | - Thomas A. Jung
- Laboratory
for X-ray Nanoscience and Technologies, Paul Scherrer Institute, Villigen-PSI 5232, Switzerland
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Ulrich Aschauer
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob-Haringer-Str. 2A, Salzburg 5020, Austria
| | - Shi-Xia Liu
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern 3012, Switzerland
| |
Collapse
|
17
|
Maeda M, Sato K, De Feyter S, Tahara K. Homochiral hierarchical molecular assemblies through dynamic combination of conformational states of a single chiral building block at the liquid/solid interface. NANOSCALE 2023. [PMID: 37997169 DOI: 10.1039/d3nr04042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We herein report the construction of homochiral, hierarchical self-assembled molecular networks (SAMNs) at the liquid/graphite interface using a single molecular building block, a chiral dehydrobenzo[12]annulene (cDBA) derivative with three chiral alkoxy and three hydroxy groups positioned in an alternating manner on the DBA core. The cDBA molecules form homochiral hierarchical SAMNs consisting of triangular clusters of several sizes, the size of which can be tuned by solvent polarity and solute concentration, reaching periodicities as large as 9.3 nm. We demonstrate the successful transmission of chirality information from the single molecular level to the hierarchical SAMN level, in a process that is mediated by dynamic self-sorting.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Kazuya Sato
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001 Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
18
|
Maeda M, Oda K, Hisaki I, Tahara K. Influence of core size on self-assembled molecular networks composed of C3h-symmetric building blocks through hydrogen bonding interactions: structural features and chirality. RSC Adv 2023; 13:29512-29521. [PMID: 37822655 PMCID: PMC10562897 DOI: 10.1039/d3ra05762c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The effect of the core size on the structure and chirality of self-assembled molecular networks was investigated using two aromatic carboxylic acid derivatives with frameworks displaying C3h symmetry, triphenylene derivative H3TTCA and dehydrobenzo[12]annulene (DBA) derivative DBACOOH, each having three carboxy groups per molecule. Scanning tunneling microscopy observations at the 1-heptanoic acid/graphite interface revealed H3TTCA exclusively forming a chiral honeycomb structure, and DBACOOH forming three structures (type I, II, and III structures) depending on its concentration and whether the system is subjected to annealing treatment. Hydrogen bonding interaction patterns and chirality were carefully analyzed based on a modeling study using molecular mechanics simulations. Moreover, DBACOOH forms chiral honeycomb structures through the co-adsorption of guest molecules. Structural diversity observed for DBACOOH is attributed to its relatively large core size, with this feature modulating the balance between molecule-molecule and molecule-substrate interactions.
Collapse
Affiliation(s)
- Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Kotoka Oda
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
19
|
Niu X, Zhao R, Yan S, Pang Z, Li H, Yang X, Wang K. Chiral Materials: Progress, Applications, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303059. [PMID: 37217989 DOI: 10.1002/smll.202303059] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the "codebook" of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l-amino acids and d-sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Simeng Yan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zengwei Pang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Xing Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
20
|
Lin YQ, Tian XM, Zhu BX, Chen DM, Huang C. Five Porous Complexes Constructed from a Racemic Ligand: Synthesis, Chiral Self-Assembly, Iodine Adsorption, and Desorption Properties. Inorg Chem 2023. [PMID: 37450691 DOI: 10.1021/acs.inorgchem.3c01646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Herein, a chiral bispyridyl ligand (L) was designed and synthesized using a Schiff base condensation reaction, followed by a 1,3-H shift. Five complexes, [Zn2L2(OAc)4] (1), {[CdLCl2(DMF)]·4H2O}n (2), [Cd2L2I4]·4H2O (3), {[CdL2(H2O)2](NO3)2·2CH3OH}n (4), and [Hg2L2Cl4]·2DMF (5), were synthesized and characterized upon its reaction with Zn(II), Cd(II), or Hg(II) ions, respectively. X-ray crystallography shows that the organic compound exists as a racemic ligand with equal amounts of its R- and S-isomers, and all of the synthesized complexes exhibit heterochiral self-assembly via a chiral self-discrimination process. Complexes 1, 3, and 5 exist as centrosymmetric binuclear metallamacrocycles, while complexes 2 and 4 exist as 1D looped-chain coordination polymers. Inspired by the assembled structures of the five complexes, I2 adsorption/desorption measurements for the complexes were carried out. The results show that complexes 1 and 5 exhibit good adsorption capacities toward I2 in n-hexane and in water, respectively.
Collapse
Affiliation(s)
- Yue-Qun Lin
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xiao-Mao Tian
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Bi-Xue Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Dong-Mei Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Chao Huang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
21
|
Yamagata K, Maeda M, Tessari Z, Mali KS, Tobe Y, De Feyter S, Tahara K. Solvent Mediated Nanoscale Quasi-Periodic Chirality Reversal in Self-Assembled Molecular Networks Featuring Mirror Twin Boundaries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207209. [PMID: 36683210 DOI: 10.1002/smll.202207209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Grain boundaries in polycrystals have a prominent impact on the properties of a material, therefore stimulating the research on grain boundary engineering. Structure determination of grain boundaries of molecule-based polycrystals with submolecular resolution remains elusive. Reducing the complexity to monolayers has the potential to simplify grain boundary engineering and may offer real-space imaging with submolecular resolution using scanning tunneling microscopy (STM). Herein, the authors report the observation of quasi-periodic nanoscale chirality switching in self-assembled molecular networks, in combination with twinning, as revealed by STM at the liquid/solid interface. The width of the chiral domain structure peaks at 12-19 nm. Adjacent domains having opposite chirality are connected continuously through interdigitated alkoxy chains forming a 1D defect-free domain border, reflecting a mirror twin boundary. Solvent co-adsorption and the inherent conformational adaptability of the alkoxy chains turn out to be crucial factors in shaping grain boundaries. Moreover, the epitaxial interaction with the substrate plays a role in the nanoscale chirality reversal as well.
Collapse
Affiliation(s)
- Kyohei Yamagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Matsuhiro Maeda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| | - Zeno Tessari
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Yoshito Tobe
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 30030, Taiwan
- Nanoscience and Nanotechnology Center, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, 567-0047, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, 3001, Leuven, Belgium
| | - Kazukuni Tahara
- Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, 214-8571, Japan
| |
Collapse
|
22
|
Cramer L, Larson A, Daniels AS, Sykes ECH, Gellman AJ. Molecular Origins of Chiral Amplification on an Achiral Surface: 2D Monolayers of Aspartic Acid on Cu(111). ACS NANO 2023; 17:5799-5807. [PMID: 36877997 PMCID: PMC10062026 DOI: 10.1021/acsnano.2c12312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Recent experiments have demonstrated an intriguing phenomenon in which adsorption of a nonracemic mixture of aspartic acid (Asp) enantiomers onto an achiral Cu(111) metal surface leads to autoamplification of surface enantiomeric excess, ees, to values well above those of the impinging gas mixtures, eeg. This is particularly interesting because it demonstrates that a slightly nonracemic mixture of enantiomers can be further purified simply by adsorption onto an achiral surface. In this work, we seek a deeper understanding of this phenomena and apply scanning tunneling microscopy to image the overlayer structures formed by mixed monolayers of d- and l-Asp on Cu(111) over the full range of surface enantiomeric excess; ees = -1 (pure l-Asp) through ees = 0 (racemic dl-Asp) to ees = 1 (pure d-Asp). Both enantiomers of three chiral monolayer structures are observed. One is a conglomerate (enantiomerically pure), another is a racemate (equimolar mixture of d- and l-Asp); however, the third structure accommodates both enantiomers in a 2:1 ratio. Such solid phases of enantiomer mixtures with nonracemic composition are rare in 3D crystals of enantiomers. We argue that, in 2D, the formation of chiral defects in a lattice of one enantiomer is easier than in 3D, simply because the stress associated with the chiral defect in a 2D monolayer of the opposite enantiomer can be dissipated by strain into the space above the surface.
Collapse
Affiliation(s)
- Laura
A. Cramer
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155-5813, United States
| | - Amanda Larson
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155-5813, United States
| | - Avery S. Daniels
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155-5813, United States
| | - E. Charles H. Sykes
- Department
of Chemistry, Tufts University, Medford, Massachusetts 02155-5813, United States
| | - Andrew J. Gellman
- Department of Chemical Engineering and W.E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
23
|
Cucinotta A, Kahlfuss C, Minoia A, Eyley S, Zwaenepoel K, Velpula G, Thielemans W, Lazzaroni R, Bulach V, Hosseini MW, Mali KS, De Feyter S. Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks. J Am Chem Soc 2023; 145:1194-1205. [PMID: 36576950 DOI: 10.1021/jacs.2c10933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two-dimensional (2D) chirality has been actively studied in view of numerous applications of chiral surfaces such as in chiral resolutions and enantioselective catalysis. Here, we report on the expression and amplification of chirality in hybrid 2D metallosupramolecular networks formed by a nucleobase derivative. Self-assembly of a guanine derivative appended with a pyridyl node was studied at the solution-graphite interface in the presence and absence of coordinating metal ions. In the absence of coordinating metal ions, a monolayer that is representative of a racemic compound was obtained. This system underwent spontaneous resolution upon addition of a coordinating ion and led to the formation of a racemic conglomerate. The spontaneous resolution could also be achieved upon addition of a suitable guest molecule. The mirror symmetry observed in the formation of the metallosupramolecular networks could be broken via the use of an enantiopure solvent, which led to the formation of a globally homochiral surface.
Collapse
Affiliation(s)
- Antonino Cucinotta
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Christophe Kahlfuss
- CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Keanu Zwaenepoel
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Gangamallaiah Velpula
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Véronique Bulach
- CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Mir Wais Hosseini
- CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Regional Segregation of Chiral Alcohol on Polyoxotitanate Cluster. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Effect of spatial configuration on adhesion of 1,2-disubstituted cyclohexane derivatives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Coordination-driven chiral self-assembly: Synthesis, structures and vapor adsorption properties of Zn(II) and Ag(I) complexes derived from two helical pyridylamide ligands. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Evolution of Br⋯Br contacts in enantioselective molecular recognition during chiral 2D crystallization. Nat Commun 2022; 13:5850. [PMID: 36195587 PMCID: PMC9532412 DOI: 10.1038/s41467-022-33446-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Halogen-mediated interactions play an important role in molecular recognition and crystallization in many chemical and biological systems, whereas their effect on homochiral versus heterochiral recognition and crystallization has rarely been explored. Here we demonstrate the evolution of Br⋯Br contacts in chiral recognition during 2D crystallization. On Ag(100), type I contacts prevail at low coverage and lead to homochiral recognition and the formation of 2D conglomerates; whereas type II contacts mediating heterochiral recognition are suppressed at medium coverage and appear in the racemates induced by structural transitions at high coverage. On Ag(111), type I contacts dominate the 2D crystallization and generate 2D conglomerates exclusively. DFT calculations suggest that the energy difference between type I and type II contacts is reversed upon adsorption due to the substrate induced mismatch energy penalty. This result provides fundamental understanding of halogen-mediated interactions in molecular recognition and crystallization on surface. Halogen-mediated interactions control molecular recognition in many chemical and biological systems. Here, the authors demonstrate two types of Br⋯Br contacts and their importance in chiral on-surface crystallization.
Collapse
|
28
|
Zong Y, Zhang C, Cao H. Chiral functionalization of solid surfaces with amino acid derivatives: diazonium grafting regulated by enantioselective processes. Dalton Trans 2022; 51:14906-14911. [PMID: 36106924 DOI: 10.1039/d2dt02418g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral inorganic nanostructures are essential for many enantioselective processes. It is possible to bestow chirality on otherwise achiral inorganic materials, via covalent functionalization of their surfaces with chiral organic molecules. However, controlling the degree of covalent functionalization is challenging, and there is an urgent need to find new avenues that can be applied to attach chiral moieties on different types of surfaces. By taking advantage of the versatility of diazonium chemistry, here we present a combined SPM/Raman study of the covalent grafting of amino acid-derived molecules on two different solid surfaces, with the intention to evaluate the effect of chiral reductants, chirally functionalized surfaces and chiral solvents on the chiral functionalization of solid surfaces. We show that the all three chiral species have an effect on the grafting of amino acid derivatives on solid surfaces, but affect the covalent attachment in different fashions. With a survey of the different aspects at play in chiral functionalization of solid surfaces, this study may offer a potential solution for the controlled production of many chiral nanostructures, and might also shine some light on the understanding of enantiospecific processes on inorganic crystalline surfaces.
Collapse
Affiliation(s)
- Yufen Zong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Chunmei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hai Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
29
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self-Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic Au I -, Au I /Ag I -, or Au I /Cu I -Alkynyl Coordination. Angew Chem Int Ed Engl 2022; 61:e202200748. [PMID: 35183066 DOI: 10.1002/anie.202200748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/17/2022]
Abstract
Metal-free and metal-containing molecular trefoil knots are fascinating ensembles that are usually covalently assembled, the latter requiring the rational design of di- or multidentate/multipodal ligands as connectors. In this work, we describe the self-assembly of pentadecanuclear AuI trefoil knots [Au15 (C≡CR)15 ] from monoalkynes HC≡CR (R=9,9-X2 -fluorenyl with X=nBu, n-hexyl) and [AuI (THT)Cl]. Hetero-bimetallic counterparts [Au9 M6 (C≡CR)15 ] (M=Cu/Ag) were self-assembled by reactions of [Au15 (C≡CR)15 ] with [Cu(MeCN)4 ]+ /AgNO3 and HC≡CR. The type of pentadecanuclear trefoil knots described herein is characterized by X-ray crystallography, 2D NMR and HR-ESI-MS. [Au9 Cu6 (C≡CR)15 ] is relatively stable in hexane; its excited state properties were investigated. DFT calculations revealed that non-covalent metal-metal and metal-ligand interactions, together with longer alkyl chain-strengthened inter-ligand dispersion interactions, govern the stability of the trefoil knot structures.
Collapse
Affiliation(s)
- Guang-Tao Xu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Xiao-Yong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kam-Hung Low
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qingyun Wan
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Hui-Xing Shu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
30
|
Han Q, Li Z, Sun K, Tao ML, Shi MX, Yang DX, Xia JX, Wan JJ, Wang JZ. Spontaneous chiral resolution of pentahelicene molecules on Cd(0001). Phys Chem Chem Phys 2022; 24:10292-10296. [PMID: 35437551 DOI: 10.1039/d2cp00778a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral resolution is of fundamental importance to conglomerate or racemate crystallization. Here we demonstrate that the spontaneous chiral resolution of pentahelicene racemates occurred in the monolayer domains. When deposited on a Cd(0001) surface, pentahelicene molecules crystallize into a commensurate (6 × 6)R0° structure built mainly from homochiral trimers. Spontaneous chirality separation takes place in the form of opposite mirror domains, where 2D enantiomorphism is not expressed by the oblique adlattice, but by the supramolecular chirality of the pentahelicene trimers. Furthermore, annealing the sample or extreme close-packing lead to the presence of lattice handedness through the formation of a porous network structure or an edge-on phase. These results provide valuable insight for 2D conglomerate crystallization and stereochemical recognition.
Collapse
Affiliation(s)
- Qing Han
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Zuo Li
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Kai Sun
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Min-Long Tao
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Ming-Xia Shi
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Da-Xiao Yang
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Jing-Xiang Xia
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Jia-Jie Wan
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Jun-Zhong Wang
- School of Physical Science and Technology & Chongqing Key Laboratory of Micro&Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| |
Collapse
|
31
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
32
|
Xu GT, Chang XY, Low KH, Wu LL, Wan Q, Shu HX, To WP, Huang JS, Che CM. Self‐Assembly of Molecular Trefoil Knots Featuring Pentadecanuclear Homoleptic AuI‐, AuI/AgI‐, or AuI/CuI‐Alkynyl Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Xiao-Yong Chang
- Southern University of Science and Technology Chemistry CHINA
| | | | | | - Qingyun Wan
- The University of Hong Kong Chemistry HONG KONG
| | | | - Wai-Pong To
- The University of Hong Kong Chemistry HONG KONG
| | | | - Chi-Ming Che
- The University of Hong Kong Pokfulam Road - Hong Kong HONG KONG
| |
Collapse
|
33
|
Trandafir A, Pantoş GD, Ilie A. Borazatruxenes as precursors for hybrid C-BN 2D molecular networks. NANOSCALE 2022; 14:1929-1943. [PMID: 35048940 DOI: 10.1039/d1nr07194g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing atomically thin, crystalline two-dimensional (2D) molecular materials which combine carbon with other elements is an emerging field requiring both custom-designed molecular precursors and their ability to organize into networks (hydrogen-bonded or covalent). Hybrid carbon-boron nitride (C-BN) networks face the additional challenge of needing hydrolytically-stable BN-containing molecular precursors. Here, we show that borazatruxenes (truxene-like molecules with a borazine core) and their halogenated derivatives are highly stable precursors suitable for on-surface assembly. Using scanning tunneling microscopy (STM) and density functional theory (DFT) simulations we demonstrate hierarchical H-bonded assembly based on chiral homodimers of tribromo-borazatruxenes (3Br-borazatruxenes) as building blocks for both 1D chains and 2D networks. A low-symmetry, H-bonded chiral 2D lattice forms on Au(111) from the C3-symmetric 3Br-borazatruxenes, leading to large enantiomorphic domains that are molecularly homochiral. Such homochiral segregation is a necessary condition if chiral C-BN covalent networks are to be obtained via subsequent on-surface reactions. We show via DFT that up to two Na atoms can be trapped within the small pores of this dense lattice, while further Na atoms can adsorb on preferred network sites; this leads to hybrid Na-molecular network electronic bands with anisotropic dispersion and significant (up to hundreds of meV) bandwidths, as well as significant doping, that can engender anisotropic transport through the network. Finally, electronic structure comparisons (combining both experiment and computation) between borazatruxene, its tri-brominated derivative and truxene show that the borazine core controls the band gap increase, while also inducing C-B pz-pz electron delocalization that facilitates a continuous electron path across the molecule. Furthermore, as shown by DFT, the borazine core drives inter-layer B-N polar interactions that promote adsorption of BN containing molecules in a staggered configuration, a mechanism to be exploited in layer-by-layer supra-molecular assembly of novel hybrid C-BN materials.
Collapse
Affiliation(s)
- Anamaria Trandafir
- Department of Physics, University of Bath, Bath, UK.
- Department of Chemistry, University of Bath, Bath, UK
- Centre for Graphene Science, University of Bath, Bath, UK
- Centre for Nanoscience and Nanotechnology, University of Bath, Bath, UK
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, UK
- Centre for Graphene Science, University of Bath, Bath, UK
| | - Adelina Ilie
- Department of Physics, University of Bath, Bath, UK.
- Centre for Graphene Science, University of Bath, Bath, UK
- Centre for Nanoscience and Nanotechnology, University of Bath, Bath, UK
| |
Collapse
|
34
|
Assavapanumat S, Butcha S, Ittisanronnachai S, Kuhn A, Wattanakit C. Heterogeneous Enantioselective Catalysis with Chiral Encoded Mesoporous Pt-Ir Films Supported on Ni Foam. Chem Asian J 2021; 16:3345-3353. [PMID: 34416087 DOI: 10.1002/asia.202100966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/11/2022]
Abstract
The development of heterogeneous catalysts for asymmetric synthesis is one of the most challenging topics in chemistry, as it allows obtaining enantiomerically pure compounds. Recently, metal layers incorporating molecular chiral cavities, obtained by electroreduction of a metal source in the simultaneous presence of a non-ionic surfactant and asymmetric molecules, have been proposed for a wide range of applications, including enantioselective electroanalysis and electrosynthesis, as well as chiral separation. In contrast to this previous work, solely based on electrochemical phenomena, herein we designed and employed nanostructured chiral encoded Pt-Ir alloys, supported on high surface area nickel foams, as heterogeneous catalysts for the asymmetric hydrogenation of aromatic ketones. Fine-tuning the experimental conditions allows achieving very high enantioselectivity (>80%), combined with improved catalyst stability.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Sopon Butcha
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Somlak Ittisanronnachai
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Alexander Kuhn
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand.,University of Bordeaux, CNRS, UMR 5255, Bordeaux INP, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France
| | - Chularat Wattanakit
- School of Energy Science and Engineering, School of Molecular Science and Engineering, Frontier Research Center (FRC), Nanocatalysts and Nanomaterials for Sustainable Energy and Environment Research Network of NANOTEC, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| |
Collapse
|
35
|
Tong L, Kuang X, Duan Q, Zheng X. Nanofiber Membrane for Chiral Detection of Tyrosine Enantiomer. STARCH-STARKE 2021. [DOI: 10.1002/star.202100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Tong
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China
| | - Xuan Kuang
- School of Chemistry and Chemical Engineering University of Jinan Jinan 250022 P. R. China
| | - Qian Duan
- Office of academic affairs Shandong University of Engineering and Vocational Technology Jinan 250200 China
| | - Xiaodong Zheng
- All China Federation of Supply & Marketing Cooperatives Jinan Fruit Research Institute Jinan 250014 China
| |
Collapse
|
36
|
Voigt J, Roy M, Baljozović M, Wäckerlin C, Coquerel Y, Gingras M, Ernst K. Unbalanced 2D Chiral Crystallization of Pentahelicene Propellers and Their Planarization into Nanographenes. Chemistry 2021; 27:10251-10254. [PMID: 34042228 PMCID: PMC8362048 DOI: 10.1002/chem.202101223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 11/08/2022]
Abstract
The chiral self-assembly of trispentahelicene propellers on a gold surface has been investigated in ultrahigh vacuum by means of scanning tunneling microscopy and time-of-flight secondary ion mass spectrometry. The trispentahelicene propellers aggregate into mirror domains with an enantiomeric ratio of 2 : 1. Thermally induced cyclodehydrogenation leads to planarization into nanographenes, which self-assemble into closed-packed layers with two different azimuths. Further treatment induces in part dimerization and trimerization by intermolecular cyclodehydrogenation.
Collapse
Affiliation(s)
- Jan Voigt
- Surface Science and Coating TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 1298600DübendorfSwitzerland
| | - Myriam Roy
- Aix Marseille Univ.CNRSCINAMMarseilleFrance
| | - Miloš Baljozović
- Surface Science and Coating TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 1298600DübendorfSwitzerland
| | - Christian Wäckerlin
- Surface Science and Coating TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 1298600DübendorfSwitzerland
| | - Yoann Coquerel
- Aix Marseille Univ.CNRSCentrale MarseilleiSm2MarseilleFrance
| | | | - Karl‐Heinz Ernst
- Surface Science and Coating TechnologiesEmpaSwiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 1298600DübendorfSwitzerland
- Nanosurf LaboratoryInstitute of PhysicsThe Czech Academy of SciencesCukrovarnická 1016200PragueCzech Republic
- Department of ChemistryUniversity of Zurich8057ZurichSwitzerland
| |
Collapse
|
37
|
Han J, Wzorek A, Klika KD, Soloshonok VA. Recommended Tests for the Self-Disproportionation of Enantiomers (SDE) to Ensure Accurate Reporting of the Stereochemical Outcome of Enantioselective Reactions. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26092757. [PMID: 34067099 PMCID: PMC8124418 DOI: 10.3390/molecules26092757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to highlight the necessity of conducting tests to gauge the magnitude of the self-disproportionation of enantiomers (SDE) phenomenon to ensure the veracity of reported enantiomeric excess (ee) values for scalemic samples obtained from enantioselective reactions, natural products isolation, etc. The SDE always occurs to some degree whenever any scalemic sample is subjected to physicochemical processes concomitant with the fractionation of the sample, thus leading to erroneous reporting of the true ee of the sample if due care is not taken to either preclude the effects of the SDE by measurement of the ee prior to the application of physicochemical processes, suppressing the SDE, or evaluating all obtained fractions of the sample. Or even avoiding fractionation altogether if possible. There is a clear necessity to conduct tests to assess the magnitude of the SDE for the processes applied to samples and the updated and improved recommendations described herein cover chromatography and processes involving gas-phase transformations such as evaporation or sublimation.
Collapse
Affiliation(s)
- Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Alicja Wzorek
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Karel D. Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Correspondence: (K.D.K.); (V.A.S.)
| | - Vadim A. Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
- Correspondence: (K.D.K.); (V.A.S.)
| |
Collapse
|
38
|
Asymmetric azide-alkyne Huisgen cycloaddition on chiral metal surfaces. Commun Chem 2021; 4:51. [PMID: 36697612 PMCID: PMC9814088 DOI: 10.1038/s42004-021-00488-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/09/2021] [Indexed: 01/28/2023] Open
Abstract
Achieving fundamental understanding of enantioselective heterogeneous synthesis is marred by the permanent presence of multitudinous arrangements of catalytically active sites in real catalysts. In this study, we address this issue by using structurally comparatively simple, well-defined, and chiral intermetallic PdGa{111} surfaces as catalytic substrates. We demonstrate the impact of chirality transfer and ensemble effect for the thermally activated azide-alkyne Huisgen cycloaddition between 3-(4-azidophenyl)propionic acid and 9-ethynylphenanthrene on these threefold symmetric intermetallic surfaces under ultrahigh vacuum conditions. Specifically, we encounter a dominating ensemble effect for this reaction as on the Pd3-terminated PdGa{111} surfaces no stable heterocoupled structures are created, while on the Pd1-terminated PdGa{111} surfaces, the cycloaddition proceeds regioselectively. Moreover, we observe chirality transfer from the substrate to the reaction products, as they are formed enantioselectively on the Pd1-terminated PdGa{111} surfaces. Our results evidence a determinant ensemble effect and the immense potential of PdGa as asymmetric heterogeneous catalyst.
Collapse
|
39
|
Irziqat B, Berger J, Mendieta-Moreno JI, Sundar MS, Bedekar AV, Ernst KH. Transition from Homochiral Clusters to Racemate Monolayers during 2D Crystallization of Trioxa[11]helicene on Ag(100). Chemphyschem 2021; 22:293-297. [PMID: 33289221 DOI: 10.1002/cphc.202000853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Indexed: 11/06/2022]
Abstract
The phenomenon of chiral crystallization into homochiral crystals is known for more than 170 years, yet it is still poorly understood. Studying crystallization on surfaces under well-defined condition seems a promising approach towards better understanding the intermolecular chiral recognition mechanisms during nucleation and growth. The two-dimensional aggregation of racemic trioxaundecahelicene on the single crystalline silver(100) surface has been investigated with scanning tunneling microscopy and with non-contact atomic force microscopy, as well as molecular modeling simulations. A transition from homochiral cluster motifs to heterochiral assembly into large islands with increasing coverage is observed. Force field modelling confirms higher stability of heterochiral arrangements from twelve molecules on. Results are discussed with respect to previous findings for the all-carbon heptahelicene on the same surface.
Collapse
Affiliation(s)
- Bahaaeddin Irziqat
- Surface Science and Coating Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Jan Berger
- Surface Science and Coating Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.,Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| | - Jesús I Mendieta-Moreno
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| | - Mothuku Shyam Sundar
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Ashutosh V Bedekar
- Department of Chemistry, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Karl-Heinz Ernst
- Surface Science and Coating Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.,Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague, Czech Republic
| |
Collapse
|
40
|
Tobe Y, Tahara K, De Feyter S. Chirality in porous self-assembled monolayer networks at liquid/solid interfaces: induction, reversion, recognition and transfer. Chem Commun (Camb) 2021; 57:962-977. [PMID: 33432944 DOI: 10.1039/d0cc07374a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chirality in two dimensions (2D) has attracted increasing attention with regard to interesting fundamental aspects as well as potential applications. This article reports several aspects of supramolecular chirality control as exemplified by self-assembled monolayer networks (SAMNs) formed by a class of chiral building blocks consisting of a triangular conjugated core and alkoxy chains on the periphery. It highlights 2D chirality induction phenomena through a classic "sergeants-and-soldiers" mechanism, in which the inducer is incorporated into a network component, as well as through a "supramolecular host-guest" mechanism, in which the inducer is entrapped in the porous space, leading to counterintuitive chirality reversal. Stereochemical control can be extended to three dimensions too, based on interlayer hydrogen bonding of the same class of building blocks bearing hydroxy groups, exhibiting diastereospecific bilayer formation at both single molecule level and supramolecular level arising from orientation between the top and bottom layers. Finally, we showcase that homochiral SAMNs can also be used as templates for the grafting of in situ generated aryl radicals, by covalent bond formation to the basal graphitic surface, thereby yielding topologically chiral functionalized graphite, and thus extending the potential of chiral SAMNs.
Collapse
Affiliation(s)
- Yoshito Tobe
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan and Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kazukuni Tahara
- Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan and Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
41
|
Rodríguez LM, Gómez P, Más-Montoya M, Abad J, Tárraga A, Cerdá JI, Méndez J, Curiel D. Synthesis and Two-Dimensional Chiral Surface Self-Assembly of a π-Conjugated System with Three-Fold Symmetry: Benzotri(7-Azaindole). Angew Chem Int Ed Engl 2021; 60:1782-1788. [PMID: 33146444 DOI: 10.1002/anie.202012100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 11/06/2022]
Abstract
The synthesis of a novel expanded π-conjugated system, namely benzotri(7-azaindole), BTAI, is reported. Its C3h symmetry along with the integration of six complementary donor and acceptor N-H⋅⋅⋅N hydrogen bonds in the conjugated structure promote the 2D self-assembly on Au(111) over extended areas. Besides, a perfect commensurability with the gold lattice endows the physisorbed molecular film with a remarkable stability. The structural features of BTAI result in two levels of surface chirality: Firstly, the molecules become chiral upon adsorption on the surface. Then, due to the favorable N-H⋅⋅⋅N hydrogen bond-directed self-assembly, along with the relative molecular rotation with respect to the substrate, supramolecular chirality manifests in two mirror enantiomorphous domains. Thus, the system undergoes spontaneous chiral resolution. LEED and STM assisted by theoretical simulations have been employed to characterize in detail these novel 2D conglomerates with relevant chiral properties for systems with C3h symmetry.
Collapse
Affiliation(s)
- Luis M Rodríguez
- Department of Surfaces and Coatings, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - Paula Gómez
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - Miriam Más-Montoya
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - José Abad
- Department of Applied Physics and Naval Technology, Technical University of Cartagena, Campus Muralla del Mar, 30203-, Cartagena, Spain
| | - Alberto Tárraga
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| | - Jorge I Cerdá
- Department of Interfaces and Nanostructures, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - Javier Méndez
- Department of Surfaces and Coatings, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049-, Madrid, Spain
| | - David Curiel
- Department of Organic Chemistry, University of Murcia, Campus of Espinardo, 30100-, Murcia, Spain
| |
Collapse
|
42
|
Synthesis and Two‐Dimensional Chiral Surface Self‐Assembly of a π‐Conjugated System with Three‐Fold Symmetry: Benzotri(7‐Azaindole). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Maistrenko VN, Zil’berg RA. Enantioselective Voltammetric Sensors on the Basis of Chiral Materials. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Dutta S, Yun Y, Widom M, Gellman AJ. 2D Ising Model for Adsorption-induced Enantiopurification of Racemates. Chemphyschem 2020; 22:197-203. [PMID: 33336873 DOI: 10.1002/cphc.202000881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 11/10/2022]
Abstract
Mechanisms for the spontaneous transformation of achiral chemical systems into states of enantiomeric purity have important ramifications in modern pharmacology and potential relevance to the origins of homochirality in life on Earth. Such mechanisms for enantiopurification are needed for production of chiral pharmaceuticals and other bioactive compounds. Previously proposed chemical mechanisms leading from achiral systems to near homochirality are initiated by a symmetry-breaking step resulting in a minor excess of one enantiomer via statistical fluctuations in enantiomer concentrations. Subsequent irreversible processes then amplify the majority enantiomer concentration while simultaneously suppressing minority enantiomer production. Herein, equilibrium adsorption of amino acid enantiomer mixtures onto chiral and achiral surfaces reveals amplification of surface enantiomeric excess relative to the gas phase; i. e. enantiopurification of chiral adsorbates by adsorption. This adsorption-induced amplification of enantiomeric excess is shown to be well-describe by the 2D Ising model. More importantly, the 2D-Ising model predicts formation of homochiral monolayers from adsorption of racemic mixtures or prochiral molecules on achiral surfaces; i. e. enantiopurification with no apparent chiral driving force.
Collapse
Affiliation(s)
- Soham Dutta
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Yongju Yun
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Geongbyuk, 37673, Republic of Korea
| | - Michael Widom
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, 15213, USA
| | - Andrew J Gellman
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.,W.E. Scott Institute for Energy Innovation, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Ma Y, Shi L, Yue H, Gao X. Recognition at chiral interfaces: From molecules to cells. Colloids Surf B Biointerfaces 2020; 195:111268. [DOI: 10.1016/j.colsurfb.2020.111268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 01/24/2023]
|
46
|
Control of self-assembly pathways toward conglomerate and racemic supramolecular polymers. Nat Commun 2020; 11:5460. [PMID: 33122635 PMCID: PMC7596528 DOI: 10.1038/s41467-020-19189-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
Homo- and heterochiral aggregation during crystallization of organic molecules has significance both for fundamental questions related to the origin of life as well as for the separation of homochiral compounds from their racemates in industrial processes. Herein, we analyse these phenomena at the lowest level of hierarchy – that is the self-assembly of a racemic mixture of (R,R)- and (S,S)-PBI into 1D supramolecular polymers. By a combination of UV/vis and NMR spectroscopy as well as atomic force microscopy, we demonstrate that homochiral aggregation of the racemic mixture leads to the formation of two types of supramolecular conglomerates under kinetic control, while under thermodynamic control heterochiral aggregation is preferred, affording a racemic supramolecular polymer. FT-IR spectroscopy and quantum-chemical calculations reveal unique packing arrangements and hydrogen-bonding patterns within these supramolecular polymers. Time-, concentration- and temperature-dependent UV/vis experiments provide further insights into the kinetic and thermodynamic control of the conglomerate and racemic supramolecular polymer formation. Homo- and heterochiral aggregation is a process of interest to prebiotic and chiral separation chemistry. Here, the authors analyze the self-assembly of a racemic mixture into 1D supramolecular polymers and find homochiral aggregation into conglomerates under kinetic control, while under thermodynamic control a racemic polymer is formed.
Collapse
|
47
|
Ristow F, Scheffel J, Xu X, Fehn N, Oberhofer KE, Riemensberger J, Mortaheb F, Kienberger R, Heiz U, Kartouzian A, Iglev H. Understanding laser desorption with circularly polarized light. Chirality 2020; 32:1341-1353. [PMID: 33091214 DOI: 10.1002/chir.23279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
We present aspects of emerging optical activity in thin racemic 1,1'-Bi-2-naphthol films upon irradiation with circularly polarized light and subsequent resonant two-photon absorption in the sample. Thorough analysis of the sample morphology is conducted by means of (polarization-resolved) optical microscopy and scanning electron microscopy (SEM). The influence of crystallization on the nonlinear probing technique (second harmonic generation circular dichroism [SHG-CD]) is investigated. Optical activity and crystallization are brought together by a systematic investigation in different crystallization regimes. We find crystallization to be responsible for two counter-acting effects, which arise for different states of crystallization. Measuring crystallized samples offers the best signal-to-noise ratio, but it limits generation of optical activity due to self-assembly effects. For suppression of crystallization on the other hand, there is a clear indication that enantiomeric selective desorption is responsible for the generation of optical activity in the sample. We reach the current resolution limit of probing with SHG-CD, as we suppress the crystallization in the racemic sample during desorption. In addition, intensity-dependent measurements on the induced optical activity reveal an onset threshold (≈0.7 TW cm-2), above which higher order nonlinear processes impair the generation of optical activity by desorption with CPL.
Collapse
Affiliation(s)
- Florian Ristow
- Physik-Department E11, Technische Universität München, Garching, Germany
| | - Jakob Scheffel
- Physik-Department E11, Technische Universität München, Garching, Germany
| | - Xuqiang Xu
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Natalie Fehn
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Katrin E Oberhofer
- Physik-Department E11, Technische Universität München, Garching, Germany
| | | | - Farinaz Mortaheb
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | | | - Ulrich Heiz
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Aras Kartouzian
- Catalysis Research Center and Chemistry Department, Physical Chemistry, Technical University of Munich, Garching, Germany
| | - Hristo Iglev
- Physik-Department E11, Technische Universität München, Garching, Germany
| |
Collapse
|
48
|
Stolz S, Yakutovich AV, Prinz J, Dienel T, Pignedoli CA, Brune H, Gröning O, Widmer R. Near‐Enantiopure Trimerization of 9‐Ethynylphenanthrene on a Chiral Metal Surface. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Samuel Stolz
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Institute of Physics École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Aliaksandr V. Yakutovich
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Present address: Laboratory of Molecular Simulation (LSMO) Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais Rue de l'Industrie 17 1951 Sion Switzerland
| | - Jan Prinz
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Institute of Physics École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Thomas Dienel
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Present address: Department of Materials Science and Engineering Cornell University Ithaca NY 14853 USA
| | - Carlo A. Pignedoli
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Harald Brune
- Institute of Physics École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Oliver Gröning
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Roland Widmer
- nanotech@surfaces Laboratory Empa—Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| |
Collapse
|
49
|
Stolz S, Yakutovich AV, Prinz J, Dienel T, Pignedoli CA, Brune H, Gröning O, Widmer R. Near-Enantiopure Trimerization of 9-Ethynylphenanthrene on a Chiral Metal Surface. Angew Chem Int Ed Engl 2020; 59:18179-18183. [PMID: 32589816 DOI: 10.1002/anie.202006844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 11/08/2022]
Abstract
Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on-surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9-ethynylphenanthrene (9-EP) upon annealing to 500 K on the chiral Pd3 -terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9-EP propellers. The observed behavior strongly contrasts the reaction of 9-EP on the chiral Pd1 -terminated PdGa{111} surfaces, where 9-EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.
Collapse
Affiliation(s)
- Samuel Stolz
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.,Institute of Physics, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Aliaksandr V Yakutovich
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.,Present address: Laboratory of Molecular Simulation (LSMO), Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais, Rue de l'Industrie 17, 1951, Sion, Switzerland
| | - Jan Prinz
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.,Institute of Physics, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Thomas Dienel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.,Present address: Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Carlo A Pignedoli
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Harald Brune
- Institute of Physics, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Oliver Gröning
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Roland Widmer
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| |
Collapse
|
50
|
Jin R, Li G, Sharma S, Li Y, Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem Rev 2020; 121:567-648. [DOI: 10.1021/acs.chemrev.0c00495] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Sachil Sharma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|