1
|
Curtis ER, Jones CM, Martínez TJ. Initial Conditions for Excited-State Dynamics in Solvated Systems: A Case Study. J Phys Chem B 2025; 129:2030-2042. [PMID: 39931914 DOI: 10.1021/acs.jpcb.4c06536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Simulating excited-state dynamics or computing spectra for molecules in condensed phases requires sampling the ground state to generate initial conditions. Initial conditions (or snapshots for spectra) are typically produced by QM/MM Boltzmann sampling following MM equilibration or optimization. Given the switch from a MM to a QM/MM potential energy surface, one should discard a set period of time (which we call the "healing time") from the beginning of the QM/MM trajectory. Ideally, the healing time is as short as possible (to avoid unnecessary computational effort), but long enough to equilibrate to the QM/MM ground state distribution. Healing times in previous studies range from tens of femtoseconds to tens of picoseconds, suggesting the need for guidelines to choose a healing time. We examine the effect of healing time on the nonadiabatic dynamics and spectrum of a first-generation Donor-Acceptor Stenhouse Adduct in chloroform. Insufficient healing times skew the branching ratio of ground state products and alter the relaxation time for one pathway. The influence of the healing time on the absorption spectrum is less pronounced, warning that the spectrum is not a sensitive indicator for the quality of a set of initial conditions for dynamics. We demonstrate that a reasonable estimate for the healing time can be obtained by monitoring the solute temperature during the healing trajectory. We suggest that this procedure should become standard practice for determining healing times to generate initial conditions for nonadiabatic QM/MM simulations in large molecules and condensed phases.
Collapse
Affiliation(s)
- Ethan R Curtis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chey M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Suchan J, Liang F, Durden AS, Levine BG. Prediction challenge: First principles simulation of the ultrafast electron diffraction spectrum of cyclobutanone. J Chem Phys 2024; 160:134310. [PMID: 38573851 DOI: 10.1063/5.0198333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Computer simulation has long been an essential partner of ultrafast experiments, allowing the assignment of microscopic mechanistic detail to low-dimensional spectroscopic data. However, the ability of theory to make a priori predictions of ultrafast experimental results is relatively untested. Herein, as a part of a community challenge, we attempt to predict the signal of an upcoming ultrafast photochemical experiment using state-of-the-art theory in the context of preexisting experimental data. Specifically, we employ ab initio Ehrenfest with collapse to a block mixed quantum-classical simulations to describe the real-time evolution of the electrons and nuclei of cyclobutanone following excitation to the 3s Rydberg state. The gas-phase ultrafast electron diffraction (GUED) signal is simulated for direct comparison to an upcoming experiment at the Stanford Linear Accelerator Laboratory. Following initial ring-opening, dissociation via two distinct channels is observed: the C3 dissociation channel, producing cyclopropane and CO, and the C2 channel, producing CH2CO and C2H4. Direct calculations of the GUED signal indicate how the ring-opened intermediate, the C2 products, and the C3 products can be discriminated in the GUED signal. We also report an a priori analysis of anticipated errors in our predictions: without knowledge of the experimental result, which features of the spectrum do we feel confident we have predicted correctly, and which might we have wrong?
Collapse
Affiliation(s)
- Jiří Suchan
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Fangchun Liang
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Institute of Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
3
|
Dey D, Woodhouse JL, Taylor MP, Fielding HH, Worth GA. On the multiphoton ionisation photoelectron spectra of phenol. Phys Chem Chem Phys 2024; 26:3451-3461. [PMID: 38205824 DOI: 10.1039/d3cp05559k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The phenol molecule is a prototype for non-adiabatic dynamics and the excited-state photochemistry of biomolecules. In this article, we report a joint theoretical and experimental investigation on the resonance enhanced multiphoton ionisation photoelectron (REMPI) spectra of the two lowest ionisation bands of phenol. The focus is on the theoretical interpretation of the measured spectra using quantum dynamics simulations. These were performed by numerically solving the time-dependent Schrödinger equation using the multi-layer variant of the multiconfiguration time-dependent Hartree algorithm together with a vibronic coupling Hamiltonian model. The ionising laser pulse is modelled explicitly within the ionisation continuum model to simulate experimental femtosecond 1+1 REMPI photoelectron spectra. These measured spectra are sensitive to very short lived electronically excited states, providing a rigorous benchmark for our theoretical methods. The match between experiment and theory allows for an interpretation of the features of the spectra at different wavelengths and shows that there are features due to both 'direct' and 'indirect' ionisation, resulting from non-resonant and resonant excitation by the pump pulse.
Collapse
Affiliation(s)
- Diptesh Dey
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Joanne L Woodhouse
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
- Department of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marcus P Taylor
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Helen H Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | - Graham A Worth
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|
4
|
Feng B, Yang D, He Z, Fang B, Wu G, Yang X. Excitation Energy-Dependent Decay Dynamics of the S 1 State of N-Methyl-2-pyridone. J Phys Chem A 2023; 127:10139-10146. [PMID: 38058157 DOI: 10.1021/acs.jpca.3c05745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The UV-induced decay dynamics of N-methyl-2-pyridone is investigated using a femtosecond time-resolved photoelectron spectroscopy method. Irradiation in the wavelength range of 339.3-258.9 nm prepares N-methyl-2-pyridone molecules with very different vibrational levels of the S1(11ππ*) state. For v' = 0 (origin) and a few low-energy vibrational levels slightly above the S1 state origin, the radiative decay channel is in operation for some specific vibrations. This is revealed by the excited-state lifetime of ≫1 ns. In addition, some other nearby S1 vibronic states have a much shorter lifetime in the range of several picoseconds to a few tens of picoseconds, indicating that the radiation-less decay to the ground state (S0) via internal conversion is the dominant channel for them. As the pump wavelength slightly decreases, the radiative decay is suddenly not important at all, and the deactivation rate of the S1 state becomes faster. At shorter pump wavelengths, the lifetime of highly excited vibrational states of the S1 state further decreases with the increase in the vibrational excess energy. This study provides quantitative information about the excitation energy-dependent decay dynamics of the S1 state of N-methyl-2-pyridone. Methyl substitution effects on the excited-state dynamics of 2-pyridone are also discussed.
Collapse
Affiliation(s)
- Baihui Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyuan Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Zhigang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Benjie Fang
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
6
|
Heim ZN, Neumark DM. Nonadiabatic Dynamics Studied by Liquid-Jet Time-Resolved Photoelectron Spectroscopy. Acc Chem Res 2022; 55:3652-3662. [PMID: 36480155 DOI: 10.1021/acs.accounts.2c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of the liquid microjet technique by Faubel and co-workers has enabled the investigation of high vapor pressure liquids and solutions utilizing high-vacuum methods. One such method is photoelectron spectroscopy (PES), which allows one to probe the electronic properties of a sample through ionization in a state-specific manner. Liquid microjets consisting of pure solvents and solute-solvent systems have been studied with great success utilizing PES and, more recently, time-resolved PES (TRPES). Here, we discuss progress made over recent years in understanding the solvation and excited state dynamics of the solvated electron and nucleic acid constituents (NACs) using these methods, as well as the prospect for their future.The solvated electron is of particular interest in liquid microjet experiments as it represents the simplest solute system. Despite this simplicity, there were still many unresolved questions about its binding energy and excited state relaxation dynamics that are ideal problems for liquid microjet PES. In the work discussed in this Account, accurate binding energies were measured for the solvated electron in multiple high vapor pressure solvents. The advantages of liquid jet PES were further highlighted in the femtosecond excited state relaxation studies on the solvated electron in water where a 75 ± 20 fs lifetime attributable to internal conversion from the excited p-state to a hot ground state was measured, supporting a nonadiabatic relaxation mechanism.Nucleic acid constituents represent a class of important solutes with several unresolved questions that the liquid microjet PES method is uniquely suited to address. As TRPES is capable of tracking dynamics with state-specificity, it is ideal for instances where there are multiple excited states potentially involved in the dynamics. Time-resolved studies of NAC relaxation after excitation using ultraviolet light identified relaxation lifetimes from multiple excited states. The state-specific nature of the TRPES method allowed us to identify the lack of any signal attributable to the 1nπ* state in thymine derived NACs. The femtosecond time resolution of the technique also aided in identifying differences between the excited state lifetimes of thymidine and thymidine monophosphate. These have been interpreted, aided by molecular dynamics simulations, as an influence of conformational differences leading to a longer excited state lifetime in thymidine monophosphate.Finally, we discuss advances in tabletop light sources extending into the extreme ultraviolet and soft X-ray regimes that allow expansion of liquid jet TRPES to full valence band and potentially core level studies of solutes and pure liquids in liquid microjets. As most solutes have ground state binding energies in the range of 10 eV, observation of both excited state decay and ground state recovery using ultraviolet pump-ultraviolet probe TRPES has been intractable. With high-harmonic generation light sources, it will be possible to not only observe complete relaxation pathways for valence level dynamics but to also track dynamics with element specificity by probing core levels of the solute of interest.
Collapse
Affiliation(s)
- Zachary N Heim
- Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
7
|
Abstract
Knowledge of the electronic structure of an aqueous solution is a prerequisite to understanding its chemical and biological reactivity and its response to light. One of the most direct ways of determining electronic structure is to use photoelectron spectroscopy to measure electron binding energies. Initially, photoelectron spectroscopy was restricted to the gas or solid phases due to the requirement for high vacuum to minimize inelastic scattering of the emitted electrons. The introduction of liquid-jets and their combination with intense X-ray sources at synchrotrons in the late 1990s expanded the scope of photoelectron spectroscopy to include liquids. Liquid-jet photoelectron spectroscopy is now an active research field involving a growing number of research groups. A limitation of X-ray photoelectron spectroscopy of aqueous solutions is the requirement to use solutes with reasonably high concentrations in order to obtain photoelectron spectra with adequate signal-to-noise after subtracting the spectrum of water. This has excluded most studies of organic molecules, which tend to be only weakly soluble. A solution to this problem is to use resonance-enhanced photoelectron spectroscopy with ultraviolet (UV) light pulses (hν ≲ 6 eV). However, the development of UV liquid-jet photoelectron spectroscopy has been hampered by a lack of quantitative understanding of inelastic scattering of low kinetic energy electrons (≲5 eV) and the impact on spectral lineshapes and positions.In this Account, we describe the key steps involved in the measurement of UV photoelectron spectra of aqueous solutions: photoionization/detachment, electron transport of low kinetic energy electrons through the conduction band, transmission through the water-vacuum interface, and transport through the spectrometer. We also explain the steps we take to record accurate UV photoelectron spectra of liquids with excellent signal-to-noise. We then describe how we have combined Monte Carlo simulations of electron scattering and spectral inversion with molecular dynamics simulations of depth profiles of organic solutes in aqueous solution to develop an efficient and widely applicable method for retrieving true UV photoelectron spectra of aqueous solutions. The huge potential of our experimental and spectral retrieval methods is illustrated using three examples. The first is a measurement of the vertical detachment energy of the green fluorescent protein chromophore, a sparingly soluble organic anion whose electronic structure underpins its fluorescence and photooxidation properties. The second is a measurement of the vertical ionization energy of liquid water, which has been the subject of discussion since the first X-ray photoelectron spectroscopy measurement in 1997. The third is a UV photoelectron spectroscopy study of the vertical ionization energy of aqueous phenol which demonstrates the possibility of retrieving true photoelectron spectra from measurements with contributions from components with different concentration profiles.
Collapse
|
8
|
Kotsina N, Jackson SL, Malcomson T, Paterson MJ, Townsend D. Photochemical carbon-sulfur bond cleavage in thioethers mediated via excited state Rydberg-to-valence evolution. Phys Chem Chem Phys 2022; 24:29423-29436. [PMID: 36453640 DOI: 10.1039/d2cp04789f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Time-resolved photoelectron imaging and supporting ab initio quantum chemistry calculations were used to investigate non-adiabatic excess energy redistribution dynamics operating in the saturated thioethers diethylsulfide, tetrahydrothiophene and thietane. In all cases, 200 nm excitation leads to molecular fragmentation on an ultrafast (<100 fs) timescale, driven by the evolution of Rydberg-to-valence orbital character along the S-C stretching coordinate. The C-S-C bending angle was also found to be a key coordinate driving initial internal conversion through the excited state Rydberg manifold, although only small angular displacements away from the ground state equilibrium geometry are required. Conformational constraints imposed by the cyclic ring structures of tetrahydrothiophene and thietane do not therefore influence dynamical timescales to any significant extent. Through use of a high-intensity 267 nm probe, we were also able to detect the presence of some transient (bi)radical species. These are extremely short lived, but they appear to confirm the presence of two competing excited state fragmentation channels - one proceeding directly from the initially prepared 4p manifold, and one involving non-adiabatic population of the 4s state. This is in addition to a decay pathway leading back to the S0 electronic ground state, which shows an enhanced propensity in the 5-membered ring system tetrahydrothiophene over the other two species investigated.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Sebastian L Jackson
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Thomas Malcomson
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Martin J Paterson
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.,Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
9
|
Schnappinger T, Jadoun D, Gudem M, Kowalewski M. Time-resolved X-ray and XUV based spectroscopic methods for nonadiabatic processes in photochemistry. Chem Commun (Camb) 2022; 58:12763-12781. [PMID: 36317595 PMCID: PMC9671098 DOI: 10.1039/d2cc04875b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2023]
Abstract
The photochemistry of numerous molecular systems is influenced by conical intersections (CIs). These omnipresent nonadiabatic phenomena provide ultra-fast radiationless relaxation channels by creating degeneracies between electronic states and decide over the final photoproducts. In their presence, the Born-Oppenheimer approximation breaks down, and the timescales of the electron and nuclear dynamics become comparable. Due to the ultra-fast dynamics and the complex interplay between nuclear and electronic degrees of freedom, the direct experimental observation of nonadiabatic processes close to CIs remains challenging. In this article, we give a theoretical perspective on novel spectroscopic techniques capable of observing clear signatures of CIs. We discuss methods that are based on ultra-short laser pulses in the extreme ultraviolet and X-ray regime, as their spectral and temporal resolution allow for resolving the ultra-fast dynamics near CIs.
Collapse
Affiliation(s)
- Thomas Schnappinger
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Deependra Jadoun
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Mahesh Gudem
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Centre, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
10
|
Abstract
Photochemical reactions are increasingly being used for chemical and materials synthesis, for example, in photoredox catalysis, and generally involve photoexcitation of molecular chromophores dissolved in a liquid solvent. The choice of solvent influences the outcomes of the photochemistry because solute-solvent interactions modify the energies of and crossings between electronic states of the chromophores, and they affect the evolving structures of the photoexcited molecules. Ultrafast laser spectroscopy methods with femtosecond to picosecond time resolution can resolve the dynamics of these photoexcited molecules as they undergo structural and electronic changes, relax back to the ground state, dissipate their excess internal energy to the surrounding solvent, or undergo photochemical reactions. In this Account, we illustrate how experimental studies using ultrafast lasers can reveal the influences that different solvents or cosolutes exert on the photoinduced nonadiabatic dynamics of internal conversion and intersystem crossing in nonradiative relaxation pathways. Although the environment surrounding a solute molecule is rapidly changing, with fluctuations in the coordination to neighboring solvent molecules occurring on femtosecond or picosecond time scales, we show that it is possible to photoexcite selectively only those molecular chromophores transiently experiencing specific solute-solvent interactions such as intermolecular hydrogen bonding.The effects of different solvation environments on the photodynamics are illustrated using four selected examples of photochemical processes in which the solvent has a marked effect on the outcomes. We first consider two aromatic carbonyl compounds, benzophenone and acetophenone, which are known to undergo fast intersystem crossing to populate the first excited triplet state on time scales of a few picoseconds. We show that the nonadiabatic excited-state dynamics are modified by transient hydrogen bonding of the carbonyl group to a protic solvent or by coordination to a metal cation cosolute. We then examine how different solvents modify the competition between two alternative relaxation pathways in a photoexcited UVA-sunscreen molecule, diethylamino hydroxybenzoyl hexyl benzoate (DHHB). This relaxation back to the ground electronic state is an essential part of the effective operation of the sunscreen compound, but the dynamics are sensitive to the surrounding environment. Finally, we consider how solvents of different polarity affect the energies and lifetimes of excited states with locally excited or charge-transfer character in heterocyclic organic compounds used as excited-state electron donors for photoredox catalysis. With these and other examples, we seek to develop a molecular level understanding of how the choice of solution environment might be used to control the outcomes of photochemical reactions.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Andrew J. Orr-Ewing
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
11
|
Makhija V, Boguslavskiy AE, Forbes R, Veyrinas K, Wilkinson I, Lausten R, Schuurman MS, Grant ER, Stolow A. A quantum molecular movie: polyad predissociation dynamics in the VUV excited 3pσ 2Σ u state of NO 2. Faraday Discuss 2021; 228:191-225. [PMID: 33629690 DOI: 10.1039/d0fd00128g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optical formation of coherent superposition states, a wavepacket, can allow the study of zeroth-order states, the evolution of which exhibit structural and electronic changes as a function of time: this leads to the notion of a molecular movie. Intramolecular vibrational energy redistribution, due to anharmonic coupling between modes, is the molecular movie considered here. There is no guarantee, however, that the formed superposition will behave semi-classically (e.g. Gaussian wavepacket dynamics) or even as an intuitively useful zeroth-order state. Here we present time-resolved photoelectron spectroscopy (TRPES) studies of an electronically excited triatomic molecule wherein the vibrational dynamics must be treated quantum mechanically and the simple picture of population flow between coupled normal modes fails. Specifically, we report on vibronic wavepacket dynamics in the zeroth-order 3pσ2Σu Rydberg state of NO2. This wavepacket exemplifies two general features of excited state dynamics in polyatomic molecules: anharmonic multimodal vibrational coupling (forming polyads); nonadiabatic coupling between nuclear and electronic coordinates, leading to predissociation. The latter suggests that the polyad vibrational states in the zeroth-order 3p Rydberg manifold are quasi-bound and best understood to be scattering resonances. We observed a rapid dephasing of an initially prepared 'bright' valence state into the relatively long-lived 3p Rydberg state whose multimodal vibrational dynamics and decay we monitor as a function of time. Our quantum simulations, based on an effective spectroscopic Hamiltonian, describe the essential features of the multimodal Fermi resonance-driven vibrational dynamics in the 3p state. We also present evidence of polyad-specificity in the state-dependent predissociation rates, leading to free atomic and molecular fragments. We emphasize that a quantum molecular movie is required to visualize wavepacket dynamics in the 3pσ2Σu Rydberg state of NO2.
Collapse
Affiliation(s)
- Varun Makhija
- Department of Chemistry and Physics, University of Mary Washington, Fredericksburg, VA 22401, USA and Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada.
| | - Andrey E Boguslavskiy
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada. and National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1N 5A2, Canada
| | - Ruaridh Forbes
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada. and SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, California 94025, USA
| | - Kevin Veyrinas
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada.
| | - Iain Wilkinson
- Locally-Sensitive & Time-Resolved Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rune Lausten
- National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1N 5A2, Canada
| | - Michael S Schuurman
- National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1N 5A2, Canada and Department of Chemistry, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| | - Edward R Grant
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Albert Stolow
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada. and National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1N 5A2, Canada and Department of Chemistry, University of Ottawa, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
12
|
Coppola F, Cimino P, Raucci U, Chiariello MG, Petrone A, Rega N. Exploring the Franck-Condon region of a photoexcited charge transfer complex in solution to interpret femtosecond stimulated Raman spectroscopy: excited state electronic structure methods to unveil non-radiative pathways. Chem Sci 2021; 12:8058-8072. [PMID: 34194695 PMCID: PMC8208128 DOI: 10.1039/d1sc01238j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 01/12/2023] Open
Abstract
We present electronic structure methods to unveil the non-radiative pathways of photoinduced charge transfer (CT) reactions that play a main role in photophysics and light harvesting technologies. A prototypical π-stacked molecular complex consisting of an electron donor (1-chloronaphthalene, 1ClN) and an electron acceptor (tetracyanoethylene, TCNE) was investigated in dichloromethane solution for this purpose. The characterization of TCNE:π:1ClN in both its equilibrium ground and photoinduced low-lying CT electronic states was performed by using a reliable and accurate theoretical-computational methodology exploiting ab initio molecular dynamics simulations. The structural and vibrational time evolution of key vibrational modes is found to be in excellent agreement with femtosecond stimulated Raman spectroscopy experiments [R. A. Mathies et al., J. Phys. Chem. A, 2018, 122, 14, 3594], unveiling a correlation between vibrational fingerprints and electronic properties. The evaluation of nonadiabatic coupling matrix elements along generalized normal modes has made possible the interpretation on the molecular scale of the activation of nonradiative relaxation pathways towards the ground electronic state. In particular, two low frequency vibrational modes such as the out of plane bending and dimer breathing and the TCNE central C[double bond, length as m-dash]C stretching play a prominent role in relaxation phenomena from the electronic CT state to the ground state one.
Collapse
Affiliation(s)
- Federico Coppola
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Paola Cimino
- Department of Pharmaceutical Sciences, University of Salerno Salerno 84084 Italy
| | - Umberto Raucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Maria Gabriella Chiariello
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Alessio Petrone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
| | - Nadia Rega
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario di M.S. Angelo via Cintia Napoli 80126 Italy
- Centro Interdipartimentale di Ricerca sui Biomateriali (CRIB) Piazzale Tecchio Napoli I-80125 Italy
| |
Collapse
|
13
|
Kotsina N, Townsend D. Improved insights in time-resolved photoelectron imaging. Phys Chem Chem Phys 2021; 23:10736-10755. [DOI: 10.1039/d1cp00933h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review new light source developments and data analysis considerations relevant to the time-resolved photoelectron imaging technique. Case studies illustrate how these themes may enhance understanding in studies of excited state molecular dynamics.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
14
|
Lu XJ, Zhang CR, Gong JJ, Wang W, Liu ZJ, Wu YZ, Chen HS. Optoelectronic properties of diathiafulvalene-functionalized diketopyrrolopyrrole-fullerene molecular dyad. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118767. [PMID: 32781404 DOI: 10.1016/j.saa.2020.118767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Single component molecular dyad donor-acceptor junction is an important type of organic solar cells. Understanding the optoelectronic properties of molecular dyad plays the critical role to develop active layer materials for such kind of solar cells. Here, diathiafulvalene-functionalized diketopyrrolopyrrole-fullerene (DFDPP-Ful) was selected as the representative system, and the geometries, electronic structures and excitation properties of DFDPP-Ful monomer and dimer were systematically investigated based on extensive quantum chemistry calculations. The transition configurations and molecular orbitals show that the effective electron donor and acceptor are DFDPP and fullerene moieties, respectively. It also found the light harvesting is dominated by local excitation in DFDPP moiety. Meanwhile, the hybridization and quasi-degeneration between charge transfer (CT) and local excitation exist. The dimer data suggest that the increased excited states contribute to the expanding of absorption spectra, and the excitations exhibit both the intermolecular and intra-molecular CTs. Also, the remarkable CT energy differences among the different dimer models for the lowest CT excited states support the strong interface and energy disorder in such system. Therefore, the suggestions for developing molecular dyad of single component organic solar cells would be the combination of increasing light absorption, enhancing CT and local excitation hybridization, as well as suppressing energy and interface disorder by the aid of molecular design.
Collapse
Affiliation(s)
- Xiao-Juan Lu
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Cai-Rong Zhang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Ji-Jun Gong
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Wei Wang
- Department of Applied Physics, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Zi-Jiang Liu
- Department of Physics, Lanzhou City University, Lanzhou, Gansu 730070, China
| | - You-Zhi Wu
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Hong-Shan Chen
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
15
|
Paterson MJ, Townsend D. Rydberg-to-valence evolution in excited state molecular dynamics. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1815389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Dave Townsend
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
- Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
16
|
Kotsina N, Candelaresi M, Saalbach L, Zawadzki MM, Crane SW, Sparling C, Townsend D. Short-wavelength probes in time-resolved photoelectron spectroscopy: an extended view of the excited state dynamics in acetylacetone. Phys Chem Chem Phys 2020; 22:4647-4658. [DOI: 10.1039/d0cp00068j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved photoelectron spectroscopy using a vacuum ultraviolet probe brings new insight to the excited state dynamics operating in acetylacetone.
Collapse
Affiliation(s)
- Nikoleta Kotsina
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Marco Candelaresi
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Lisa Saalbach
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | | | - Stuart W. Crane
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Chris Sparling
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
| | - Dave Townsend
- Institute of Photonics & Quantum Sciences
- Heriot-Watt University
- Edinburgh
- UK
- Institute of Chemical Sciences
| |
Collapse
|
17
|
Jhang WR, Lai HY, Lin YC, Lee C, Lee SH, Lee YY, Ni CK, Tseng CM. Triplet vs πσ* state mediated N–H dissociation of aniline. J Chem Phys 2019; 151:141101. [DOI: 10.1063/1.5121350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Wan Ru Jhang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsin Ying Lai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Cheng Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chin Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shih-Huang Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yin-Yu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Ming Tseng
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
18
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
19
|
Ling F, Liu D, Li S, Li W, Zhang B, Wang P. Femtosecond real-time probing of the excited-state intramolecular proton transfer reaction in methyl salicylate. J Chem Phys 2019; 151:094302. [PMID: 31492073 DOI: 10.1063/1.5115307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The excited-state intramolecular proton transfer (ESIPT) process and subsequent electronic relaxation dynamics in methyl salicylate have been investigated using femtosecond time-resolved ion yield spectroscopy combined with time-resolved photoelectron imaging. Excitation with a tunable pump pulse populates the keto tautomer in the first excited electronic state S1(ππ*). As a hydrogen atom transfers from the phenolic group to the carbonyl group within 100 fs, the molecular geometry changes gradually, leading to a variation in the electronic photoionization channel. By virtue of the accidental resonance with some intermediate Rydberg states, the time-dependent photoelectron spectra provide a direct mapping of the ESIPT reaction from the initially populated keto tautomer to the proton-transferred enol tautomer. Subsequently, the population around the enol configuration undergoes intramolecular vibrational redistribution on a subpicosecond time scale, followed by internal conversion to the ground state with a wavelength-dependent lifetime in the picosecond range. Furthermore, the excitation energies of several Rydberg states in methyl salicylate are determined experimentally.
Collapse
Affiliation(s)
- Fengzi Ling
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuai Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Pengfei Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
20
|
Riley JW, Wang B, Parkes MA, Fielding HH. Design and characterization of a recirculating liquid-microjet photoelectron spectrometer for multiphoton ultraviolet photoelectron spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:083104. [PMID: 31472605 DOI: 10.1063/1.5099040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
A new recirculating liquid-microjet photoelectron spectrometer for multiphoton ultraviolet photoelectron spectroscopy is described. A recirculating system is essential for studying samples that are only available in relatively small quantities. The reduction in background pressure when using the recirculating system compared to a liquid-nitrogen cold-trap results in a significant improvement in the quality of the photoelectron spectra. Moreover, the recirculating system results in a negligible streaming potential. The instrument design, operation, and characterization are described in detail, and its performance is illustrated by comparing a photoelectron spectrum of aqueous phenol recorded using the recirculating system with one recorded using a liquid nitrogen cold-trap.
Collapse
Affiliation(s)
- Jamie W Riley
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Bingxing Wang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Michael A Parkes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Helen H Fielding
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
21
|
Zhang B. Unraveling vibrational wavepacket dynamics using femtosecond ion yield spectroscopy and photoelectron imaging. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1811252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
22
|
Affiliation(s)
- Alice Henley
- Department of Chemistry, University College London, London, UK
| | | |
Collapse
|
23
|
Lu XJ, Zhang CR, Shen YL, Wu YZ, Liu ZJ, Chen HS. The electronic structures and excitation properties of three meso-pentafluorophenyl substituted zinc porphyrin–fullerene dyad. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Sala M, Egorova D. Imaging large amplitude out-of-plane motion in photoexcited pentafluorobenzene using time-resolved photoelectron spectroscopy: a computational study. Photochem Photobiol Sci 2018; 17:1036-1048. [PMID: 29999080 DOI: 10.1039/c8pp00051d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Excited-state dynamics of pentafluorobenzene is studied in detail for a quartic vibronic coupling model including the six b1 vibrational modes of the molecule and the two lowest excited electronic states. The study analyzes the influence of the large-amplitude out-of-plane vibrational motion on the electronic dynamics and extends to the simulation of the emerging time-resolved photoelectron spectra. The mapping of coherent non-separable electron-nuclear motion into oscillatory photoelectron signals is discussed.
Collapse
Affiliation(s)
- Matthieu Sala
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
| | | |
Collapse
|
25
|
Riley JW, Wang B, Woodhouse JL, Assmann M, Worth GA, Fielding HH. Unravelling the Role of an Aqueous Environment on the Electronic Structure and Ionization of Phenol Using Photoelectron Spectroscopy. J Phys Chem Lett 2018; 9:678-682. [PMID: 29356540 DOI: 10.1021/acs.jpclett.7b03310] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water is the predominant medium for chemistry and biology, yet its role in determining how molecules respond to ultraviolet light is not well understood at the molecular level. Here, we combine gas-phase and liquid-microjet photoelectron spectroscopy to investigate how an aqueous environment influences the electronic structure and relaxation dynamics of phenol, a ubiquitous motif in many biologically relevant chromophores. The vertical ionization energies of electronically excited states are important quantities that govern the rates of charge-transfer reactions, and, in phenol, the vertical ionization energy of the first electronically excited state is found to be lowered by around 0.8 eV in aqueous solution. The initial relaxation dynamics following photoexcitation with ultraviolet light appear to be remarkably similar in the gas-phase and aqueous solution; however, in aqueous solution, we find evidence to suggest that solvated electrons are formed on an ultrafast time scale following photoexcitation just above the conical intersection between the first two excited electronic states.
Collapse
Affiliation(s)
- Jamie W Riley
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Bingxing Wang
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Joanne L Woodhouse
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Mariana Assmann
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Graham A Worth
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Helen H Fielding
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|