1
|
Cao Y, Chen D, Wang Y, Shi H, Feng B, Xia C, Ding Y, He L. Red mud-mediated cross-coupling of alcohols and amines to imines over MnO catalysts. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Yang T, Yao M, Ma J, Chen P, Zhao T, Yang C, Liu F, Cao J. Role of Zirconia in Oxide-Zeolite Composite for Thiolation of Methanol with Hydrogen Sulfide to Methanethiol. NANOMATERIALS 2022; 12:nano12111803. [PMID: 35683659 PMCID: PMC9181951 DOI: 10.3390/nano12111803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
In this paper, the molecular sieve NaZSM-5 was modified with zirconium dioxide (ZrO2) by a hydrothermal coating process and other methods. By comparing the effects of the crystal phase structure of ZrO2 and the compositing method on the physicochemical properties and catalytic performance of the obtained composites, the structure–performance relationship of these composite catalysts was revealed. The results indicate that in the hydrothermal system used for the preparation of NaZSM-5, Zr4+ is more likely to dissolve from m-ZrO2 than from t-ZrO2, which can subsequently enter the molecular sieve, causing a greater degree of desiliconization of the framework. The larger specific surface area (360 m2/g) and pore volume (0.52 cm3/g) of the m-ZrO2/NaZSM-5 composite catalyst increase the exposure of its abundant acidic (0.078 mmol/g) and basic (0.081 mmol/g) active centers compared with other composites. Therefore, this catalyst exhibits a shorter induction period and better catalytic performance. Furthermore, compared with the impregnation method and mechanochemical method, the hydrothermal coating method produces a greater variety of acid–base active centers in the composite catalyst due to the hydrothermal modifying effect.
Collapse
Affiliation(s)
- Tinglong Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Mengqin Yao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Jun Ma
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Peng Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Tianxiang Zhao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Chunliang Yang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
| | - Fei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
- Correspondence: (F.L.); (J.C.)
| | - Jianxin Cao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; (T.Y.); (M.Y.); (J.M.); (P.C.); (T.Z.); (C.Y.)
- Guizhou Key Laboratory for Green Chemical and Clean Energy Technology, Guiyang 550025, China
- Correspondence: (F.L.); (J.C.)
| |
Collapse
|
3
|
Synthesis of Methyl Mercaptan on Mesoporous Alumina Prepared with Hydroxysafflor Yellow A as Template: The Synergistic Effect of Potassium and Molybdenum. Catalysts 2021. [DOI: 10.3390/catal11111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
K-promoted Mo-based catalysts showed great promise for the hydrogenation of CS2 to methyl mercaptan (CH3SH). However, the research on the synergistic effect of K and Mo, and the active site of CS2 hydrogenation to CH3SH were unexplored widely. To solve this problem, the synergistic effect of K and Mo in the K-promoted Mo-based catalysts for CS2 hydrogenation to prepare CH3SH was investigated. The mesoporous alumina was the support and loaded the active components potassium and molybdenum to prepare the catalyst. The results suggested that the active components K and Mo can not only cooperatively regulate the acid-base sites on the catalyst surface, but also stabilize the molybdate species at +5 valence during the reduction process and increase the Mo unsaturated coordination sites. Combined with the results of the catalytic activity evaluation, indicating that the main active site of the catalysts is the weak Lewis acid-base site, and the strong acidic site and strong alkaline site are not conducive to the formation of CH3SH. Moreover, the possible catalytic mechanism of CS2 hydrogenation to CH3SH on the weak Lewis acid-base sites of the catalysts was proposed. The research results of this paper can provide an experimental basis and theoretical guidance for the design of high-performance CH3SH synthesis catalyst and further mechanism research.
Collapse
|
4
|
Acid Gas Converting to Organosulfur and Hydrogen in Methanol Thiolation Using Alkali Promoted Catalysts: Case Study. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Weber-Stockbauer M, Baumgärtl M, Gutiérrez OY, Bermejo-Deval R, Lercher JA. Magnesium–Aluminum Mixed Oxides as Basic Catalysts for the Synthesis of Methanethiol. Catal Letters 2020. [DOI: 10.1007/s10562-020-03128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Yu M, Kosinov N, van Haandel L, Kooyman PJ, Hensen EJM. Investigation of the Active Phase in K-Promoted MoS2 Catalysts for Methanethiol Synthesis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b03178] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Miao Yu
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Lennart van Haandel
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| | - Patricia J. Kooyman
- Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, South Africa
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld 14, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Weber-Stockbauer M, Gutiérrez OY, Bermejo-Deval R, Lercher JA. Cesium Induced Changes in the Acid–Base Properties of Metal Oxides and the Consequences for Methanol Thiolation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Weber-Stockbauer
- Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Oliver Y. Gutiérrez
- Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Ricardo Bermejo-Deval
- Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Johannes A. Lercher
- Department of Chemistry, Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|
8
|
Weber-Stockbauer M, Gutiérrez OY, Bermejo-Deval R, Lercher JA. The role of weak Lewis acid sites for methanol thiolation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02250j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Weak Lewis acid sites combined with strong base sites of Cs+ supported on WS2 and γ-Al2O3 are the active sites in the thiolation of methanol.
Collapse
Affiliation(s)
- Manuel Weber-Stockbauer
- Technische Universität München
- Department of Chemistry and Catalysis Research Center
- D-84747 Garching
- Germany
| | - Oliver Y. Gutiérrez
- Technische Universität München
- Department of Chemistry and Catalysis Research Center
- D-84747 Garching
- Germany
| | - Ricardo Bermejo-Deval
- Technische Universität München
- Department of Chemistry and Catalysis Research Center
- D-84747 Garching
- Germany
| | - Johannes A. Lercher
- Technische Universität München
- Department of Chemistry and Catalysis Research Center
- D-84747 Garching
- Germany
- Institute for Integrated Catalysis
| |
Collapse
|