1
|
Uchida T, Ota K, Tatsumi A, Takeuchi S, Ishimori K. Metal Sensing by a Glycine-Histidine Repeat Sequence Regulates the Heme Degradation Activity of PM0042 from Pasteurella multocida. Inorg Chem 2022; 61:13543-13553. [PMID: 35960895 DOI: 10.1021/acs.inorgchem.2c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PM0042 protein from the Gram-negative bacterial pathogen Pasteurella multocida is homologous to the heme-degrading enzyme HutZ belonging to the pyridoxine-5-phosphate oxidase-like family. A characteristic feature of PM0042 is possession of a glycine-histidine (GH) repeat sequence at the C-terminal region. In this study, we examined the heme degradation ability of PM0042, with a particular focus on the role of the GH repeat sequence. PM0042 was expressed in Escherichia coli and successfully purified using a nickel (Ni2+)-affinity column without a histidine tag, suggesting that its GH motif facilitates binding to Ni2+. Reaction with ascorbic acid induced a significant decrease in the Soret band, suggesting the breakage of heme. While a Fe2+-ferrozine complex was not formed upon addition of ferrozine to the solution after the reaction, prior addition of metal ions to fill the metal binding site in the GH repeat sequence led to increased complex formation. In the presence of Fe2+, the heme degradation rate was accelerated ∼threefold, supporting the theory that Fe2+ binds the PM0042 protein (possibly at the GH repeat sequence) and enhances its heme degradation activity. In contrast to HutZ from Vibrio cholerae in which enzymatic activity is regulated by the protonation status of the heme proximal ligand, heme reduction is not the rate-determining step for PM0042. Rather, proton transfer to reduced oxyheme is affected, as established with the H2O/D2O isotope experiment. Based on the collective findings, the GH repeat sequence of PM0042 is proposed to function as a metal sensor that modulates iron uptake via the heme-degrading process in P. multocida.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Ota
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akinobu Tatsumi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Syota Takeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
2
|
Dojun N, Muranishi K, Ishimori K, Uchida T. A single mutation converts Alr5027 from cyanobacteria Nostoc sp. PCC 7120 to a heme-binding protein with heme-degrading ability. J Inorg Biochem 2019; 203:110916. [PMID: 31739124 DOI: 10.1016/j.jinorgbio.2019.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/25/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022]
Abstract
HutZ from Vibrio cholerae (VcHutZ) is a dimeric protein that catalyzes oxygen-dependent degradation of heme. The reaction mechanism is the same as that of canonical heme oxygenase (HO), but the structure of HutZ is quite different from that of HO. Thus, we postulate that HutZ has evolved via a different pathway from that of HO. The Alr5027 protein from cyanobacteria possessing proteins potentially related to ancestral proteins utilizing O2 in enzymatic reactions is homologous to HutZ family proteins (67% similarity), but the heme axial ligand of HutZ is not conserved in Alr5027. To investigate whether Alr5027 can bind and degrade heme, we expressed Alr5027 in Escherichia coli and purified it. Although Alr5027 did not bind heme, replacement of Lys164, corresponding to the heme axial ligand of HutZ, with histidine conferred heme-binding capability. The K164H mutant produced verdoheme in the reaction with H2O2, indicating acquisition of heme-degradation ability. Among the mutants, the K164H mutant produced verdoheme most efficiently. Although the K164H mutant did not degrade heme through ascorbic acid, biliverdin, the final product of VcHutZ, was formed by treatment of verdoheme with ascorbic acid. An analysis of Trp103 fluorescence indicated elongation of the distance between protomers in this mutant compared with VcHutZ-the probable cause of the inefficiency of ascorbic acid-supported heme-degradation activity. Collectively, our findings indicate that a single lysine-to-histidine mutation converted Alr5027 to a heme-binding protein that can form verdoheme through H2O2, suggesting that HutZ family proteins have acquired the heme-degradation function through molecular evolution from an ancestor protein of Alr5027.
Collapse
Affiliation(s)
- Nobuhiko Dojun
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kazuyoshi Muranishi
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takeshi Uchida
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
3
|
Uchida T, Dojun N, Ota K, Sekine Y, Nakamura Y, Umetsu S, Ishimori K. Role of conserved arginine in the heme distal site of HutZ from Vibrio cholerae in the heme degradation reaction. Arch Biochem Biophys 2019; 677:108165. [PMID: 31689379 DOI: 10.1016/j.abb.2019.108165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
HutZ from Vibrio cholerae is a dimeric enzyme that catalyzes degradation of heme. The highly conserved Arg92 residue in the HutZ family is proposed to interact with an iron-bound water molecule in the distal heme pocket. To clarify the specific role of Arg92 in the heme degradation reaction, the residue was substituted with alanine, leucine, histidine or lysine to modulate electrostatic interactions with iron-bound ligand. All four Arg92 mutants reacted with hydrogen peroxide to form verdoheme, a prominent intermediate in the heme degradation process. However, when ascorbic acid was used as an electron source, iron was not released even at pH 6.0 despite a decrease in the Soret band, indicating that non-enzymatic heme degradation occurred. Comparison of the rates of heme reduction, ligand binding and verdoheme formation suggested that proton transfer to the reduced oxyferrous heme, a potential rate-limiting step of heme degradation in HutZ, is hampered by mutation. In our previous study, we found that the increase in the distance between heme and Trp109 from 16 to 18 Å upon lowering the pH from 8.0 to 6.0 leads to activation of ascorbic acid-assisted heme degradation by HutZ. The distance in Arg92 mutants was >19 Å at pH 6.0, suggesting that subunit-subunit interactions at this pH are not suitable for heme degradation, similar to Asp132 and His63 mutants. These results suggest that interactions of Arg92 with heme-bound ligand induce alterations in the distance between subunits, which plays a key role in controlling the heme degradation activity of HutZ.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Nobuhiko Dojun
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kazuki Ota
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yukari Sekine
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Yuina Nakamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sayaka Umetsu
- Division of Chemistry, School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| |
Collapse
|
4
|
Uchida T, Ota K, Sekine Y, Dojun N, Ishimori K. Subunit-subunit interactions play a key role in the heme-degradation reaction of HutZ from Vibrio cholerae. Dalton Trans 2019; 48:3973-3983. [PMID: 30834412 DOI: 10.1039/c9dt00604d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
HutZ, a dimeric protein, from Vibrio cholerae is a protein that catalyzes the oxygen-dependent degradation of heme. Interestingly, the ascorbic acid-supported heme-degradation activity of HutZ depends on pH: less than 10% of heme is degraded by HutZ at pH 8.0, but nearly 90% of heme is degraded at pH 6.0. We examined here pH-dependent conformational changes in HutZ using fluorescence spectroscopy. Trp109 is estimated to be located approximately 21 Å from heme and is present in a different subunit containing a heme axial ligand. Thus, we postulated that the distance between heme and Trp109 reflects subunit-subunit orientational changes. On the basis of resonance energy transfer from Trp109 to heme, we estimated the distance between heme and Trp109 to be approximately 17 Å at pH 8.0, while the distance increased by less than 2 Å at pH 6.0. We presumed that such changes led to a decrease in electron donation from the proximal histidine, resulting in enhancement of the heme-degradation activity. To confirm this scenario, we mutated Ala31, located at the dimer interface, to valine to alter the distance through the subunit-subunit interaction. The distance between heme and Trp109 for the A31V mutant was elongated to 24-27 Å. Although resonance Raman spectra and reduction rate of heme suggested that this mutation resulted in diminished electron donation from the heme axial ligand, ascorbic acid-supported heme-degradation activity was not observed. Based on our findings, it can be proposed that the relative positioning of two protomers is important in determining the heme degradation rate by HutZ.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | |
Collapse
|
5
|
Uchida T, Sekine Y, Dojun N, Lewis-Ballester A, Ishigami I, Matsui T, Yeh SR, Ishimori K. Reaction intermediates in the heme degradation reaction by HutZ from Vibrio cholerae. Dalton Trans 2018; 46:8104-8109. [PMID: 28607990 DOI: 10.1039/c7dt01562c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HutZ is a heme-degrading enzyme in Vibrio cholerae. It converts heme to biliverdin via verdoheme, suggesting that it follows the same reaction mechanism as that of mammalian heme oxygenase. However, none of the key intermediates have been identified. In this study, we applied steady-state and time-resolved UV-vis absorption and resonance Raman spectroscopy to study the reaction of the heme-HutZ complex with H2O2 or ascorbic acid. We characterized three intermediates: oxyferrous heme, meso-hydroxyheme, and verdoheme complexes. Our data support the view that HutZ degrades heme in a manner similar to mammalian heme oxygenase, despite their low sequence and structural homology.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lin YW. Structure and function of heme proteins regulated by diverse post-translational modifications. Arch Biochem Biophys 2018; 641:1-30. [PMID: 29407792 DOI: 10.1016/j.abb.2018.01.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/08/2023]
|
7
|
Uchida T, Funamizu T, Ogura M, Ishimori K. Heme Iron Coordination Structure of Heme Transport Protein HutB fromVibrio Cholerae. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628
| | - Takumi Funamizu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628
| | - Mariko Ogura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628
| |
Collapse
|
8
|
Uchida T, Kobayashi N, Muneta S, Ishimori K. The Iron Chaperone Protein CyaY from Vibrio cholerae Is a Heme-Binding Protein. Biochemistry 2017; 56:2425-2434. [DOI: 10.1021/acs.biochem.6b01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Takeshi Uchida
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Noriyuki Kobayashi
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Souichiro Muneta
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department
of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|