1
|
Song Y, Sakai N, Ebina Y, Iyi N, Kikuchi T, Ma R, Ishida Y, Sasaki T. Systematic Study on Swelling/Delamination of Layered Metal Oxides with Quaternary Ammonium Ions: Production of Well-Shaped/Oversized Unilamellar Nanosheets. SMALL METHODS 2025; 9:e2401055. [PMID: 39279570 DOI: 10.1002/smtd.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Indexed: 09/18/2024]
Abstract
Enormous swelling of layered host compounds in an aqueous solution of various amines has been investigated as an important step in the synthesis of molecularly thin 2D nanosheets. However, a complete understanding of the reaction process has not been attained, which is the barrier for producing high-quality unilamellar nanosheets. Here, the swelling and delamination behaviors of platelet single crystals of protonated layered metal oxides are systematically examined with a series of tetraalkylammonium (TAA) hydroxide solutions. Upon contact with the solutions, the crystals immediately underwent massive expansion by several tens to hundreds of times. The swollen crystals can be delaminated into elementary layers by the application of external shear force. The exfoliation behavior is dependent on TAA ions, especially in terms of yield and lateral size/shape of the delaminated nanosheets. The swollen crystals with TAA ions with longer alkyl chains are delaminated almost completely, but irregular and fractured small sheets are yielded. Such long alkyl chains become entangled on the oxide layer and resulting hydrophobic interactions may be responsible for the lateral fragmentation. It is found that replacement of aqueous solutions with organic solvents to suppress the hydrophobic interactions is effective to produce oversized nanosheets in rectangular shape with sharp edges.
Collapse
Affiliation(s)
- Yeji Song
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Nobuyuki Sakai
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yasuo Ebina
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Nobuo Iyi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takayuki Kikuchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
2
|
Imwiset KJ, Dudko V, Markus P, Papastavrou G, Breu J, Ogawa M. Forceless spontaneous delamination of high-aspect ratio fluorohectorite into monolayer nanosheets in chloroform. Chem Commun (Camb) 2024; 60:6383-6386. [PMID: 38814048 DOI: 10.1039/d4cc00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One-dimensional dissolution of a layered compound in a nonpolar organic solvent is reported for the first time. A high-aspect ratio fluorohectorite modified with a cationic surfactant (dioctadecyldimethylammonium) showed spontaneous delamination into monolayer nanosheets in chloroform.
Collapse
Affiliation(s)
- Kamonnart Jaa Imwiset
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand.
| | - Volodymyr Dudko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Paul Markus
- Physical Chemistry II and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Georg Papastavrou
- Physical Chemistry II and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand.
| |
Collapse
|
3
|
Loch P, Schuchardt D, Algara-Siller G, Markus P, Ottermann K, Rosenfeldt S, Lunkenbein T, Schwieger W, Papastavrou G, Breu J. Nematic suspension of a microporous layered silicate obtained by forceless spontaneous delamination via repulsive osmotic swelling for casting high-barrier all-inorganic films. SCIENCE ADVANCES 2022; 8:eabn9084. [PMID: 35584219 PMCID: PMC9116614 DOI: 10.1126/sciadv.abn9084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Exploiting the full potential of layered materials for a broad range of applications requires delamination into functional nanosheets. Delamination via repulsive osmotic swelling is driven by thermodynamics and represents the most gentle route to obtain nematic liquid crystals consisting exclusively of single-layer nanosheets. This mechanism was, however, long limited to very few compounds, including 2:1-type clay minerals, layered titanates, or niobates. Despite the great potential of zeolites and their microporous layered counterparts, nanosheet production is challenging and troublesome, and published procedures implied the use of some shearing forces. Here, we present a scalable, eco-friendly, and utter delamination of the microporous layered silicate ilerite into single-layer nanosheets that extends repulsive delamination to the class of layered zeolites. As the sheet diameter is preserved, nematic suspensions with cofacial nanosheets of ≈9000 aspect ratio are obtained that can be cast into oriented films, e.g., for barrier applications.
Collapse
Affiliation(s)
- Patrick Loch
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Dominik Schuchardt
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Gerardo Algara-Siller
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
- Institute of Physics and IRIS Adlershof, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
| | - Paul Markus
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Katharina Ottermann
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Wilhelm Schwieger
- Institute of Chemical Reaction Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany
| | - Georg Papastavrou
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| | - Josef Breu
- Bavarian Polymer Institute, Department of Chemistry, University of Bayreuth, Universitätsstraße 30, D-95447 Bayreuth, Germany
| |
Collapse
|
4
|
Gong HR, Ren FD, Zhao LX, Cao DL, Wang JL. Hydration and swelling: a theoretical investigation on the cooperativity effect of H-bonding interactions between p-hydroxy hydroxymethyl calix[4]/[5]arene and H 2O by many-body interaction and density functional reactivity theory. J Mol Model 2020; 26:190. [PMID: 32613574 DOI: 10.1007/s00894-020-04442-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
In order to explore the nature of the hydration and swelling of superabsorbent resin, a theoretical investigation into the cooperativity effect of the H-bonding interactions in the hydrates of four model compounds that can be regarded as the units of hydroquinone formaldehyde resin (HFR) (i.e., O-hydroxymethyl-1,4-dihydroxybenzene, methylene di-O-hydroxymethyl-1,4-dihydroxybenzene, p-hydroxy hydroxymethyl calix[4]arene and p-hydroxy hydroxymethyl calix[5]arene) was carried out by many-body interaction and density functional reactivity theory. The HFR···H2O···H2O complexes, in which the H2O···H2O moieties are bound with both the hydroxyl groups of HFR, are the most stable. For the HFR(H2O)n clusters, the interaction energy per building block is increased as the number of the size n increases, indicating the cooperativity effect. Therefore, a deduction is given that the cooperativity effects of the H-bonding interactions play an important role in the process of the hydration and swelling of HFR, and the swelling behavior is mainly attributed to the cooperativity effects which arised from the interactions between the H2O molecules. The origin of the cooperativity effect was examined employing several information-theoretic quantities in the density functional reactivity theory. The degree of swelling of HFR was quantitated using a measure of volume. Graphical abstract.
Collapse
Affiliation(s)
- Hui-Ru Gong
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Fu-de Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Lin-Xiu Zhao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Duan-Lin Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| | - Jian-Long Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China
| |
Collapse
|