1
|
Kenny J, Neefe SR, Brandner DG, Stone ML, Happs RM, Kumaniaev I, Mounfield WP, Harman-Ware AE, Devos KM, Pendergast TH, Medlin JW, Román-Leshkov Y, Beckham GT. Design and Validation of a High-Throughput Reductive Catalytic Fractionation Method. JACS AU 2024; 4:2173-2187. [PMID: 38938803 PMCID: PMC11200236 DOI: 10.1021/jacsau.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024]
Abstract
Reductive catalytic fractionation (RCF) is a promising method to extract and depolymerize lignin from biomass, and bench-scale studies have enabled considerable progress in the past decade. RCF experiments are typically conducted in pressurized batch reactors with volumes ranging between 50 and 1000 mL, limiting the throughput of these experiments to one to six reactions per day for an individual researcher. Here, we report a high-throughput RCF (HTP-RCF) method in which batch RCF reactions are conducted in 1 mL wells machined directly into Hastelloy reactor plates. The plate reactors can seal high pressures produced by organic solvents by vertically stacking multiple reactor plates, leading to a compact and modular system capable of performing 240 reactions per experiment. Using this setup, we screened solvent mixtures and catalyst loadings for hydrogen-free RCF using 50 mg poplar and 0.5 mL reaction solvent. The system of 1:1 isopropanol/methanol showed optimal monomer yields and selectivity to 4-propyl substituted monomers, and validation reactions using 75 mL batch reactors produced identical monomer yields. To accommodate the low material loadings, we then developed a workup procedure for parallel filtration, washing, and drying of samples and a 1H nuclear magnetic resonance spectroscopy method to measure the RCF oil yield without performing liquid-liquid extraction. As a demonstration of this experimental pipeline, 50 unique switchgrass samples were screened in RCF reactions in the HTP-RCF system, revealing a wide range of monomer yields (21-36%), S/G ratios (0.41-0.93), and oil yields (40-75%). These results were successfully validated by repeating RCF reactions in 75 mL batch reactors for a subset of samples. We anticipate that this approach can be used to rapidly screen substrates, catalysts, and reaction conditions in high-pressure batch reactions with higher throughput than standard batch reactors.
Collapse
Affiliation(s)
- Jacob
K. Kenny
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Sasha R. Neefe
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - David G. Brandner
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Michael L. Stone
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Renee M. Happs
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Ivan Kumaniaev
- Department
of Organic Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - William P. Mounfield
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Anne E. Harman-Ware
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| | - Katrien M. Devos
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Thomas H. Pendergast
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
- Institute
of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States
- Department
of Crop and Soil Sciences, University of
Georgia, Athens, Georgia 30602, United States
- Department
of Plant Biology, University of Georgia, Athens, Georgia 30602, United States
| | - J. Will Medlin
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Center
for Bioenergy Innovation, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
2
|
Rinken R, Posthuma D, Rinaldi R. Lignin Stabilization and Carbohydrate Nature in H-transfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling. CHEMSUSCHEM 2023; 16:e202201875. [PMID: 36469562 PMCID: PMC10108069 DOI: 10.1002/cssc.202201875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Reductive Catalytic Fractionation (RCF) of lignocellulosic materials produces lignin oil rich in monomer products and high-quality cellulosic pulps. RCF lignin oil also contains lignin oligomers/polymers and hemicellulose-derived carbohydrates. The variety of components makes lignin oil a complex matrix for analytical methods. As a result, the signals are often convoluted and overlapped, making detecting and quantifying key intermediates challenging. Therefore, to investigate the mechanisms underlining lignin stabilization and elucidate the structural features of carbohydrates occurring in the RCF lignin oil, fractionation methods reducing the RCF lignin oil complexity are required. This report examines the solvent fractionation of RCF lignin oil as a facile method for producing lignin oil fractions for advanced characterization. Solvent fractionation uses small volumes of environmentally benign solvents (methanol, acetone, and ethyl acetate) to produce multigram lignin fractions comprising products in different molecular weight ranges. This feature allows the determination of structural heterogeneity across the entire molecular weight distribution of the RCF lignin oil by high-resolution HSQC NMR spectroscopy. This study provides detailed insight into the role of the hydrogenation catalyst (Raney Ni) in stabilizing lignin fragments and defining the structural features of hemicellulose-derived carbohydrates in lignin oil obtained by the H-transfer RCF process.
Collapse
Affiliation(s)
- Raul Rinken
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Dean Posthuma
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| | - Roberto Rinaldi
- Department of Chemical EngineeringImperial College LondonSouth Kensington CampusSW7 2AZLondonUK
| |
Collapse
|
3
|
Park J, Cahyadi HS, Mushtaq U, Verma D, Han D, Nam KW, Kwak SK, Kim J. Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03393] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jaeyong Park
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Handi Setiadi Cahyadi
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Umair Mushtaq
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Deepak Verma
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Daseul Han
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, 50 Unist-gil, Ulsan 44919, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro,
Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
4
|
Park J, Riaz A, Verma D, Lee HJ, Woo HM, Kim J. Fractionation of Lignocellulosic Biomass over Core-Shell Ni@Al 2 O 3 Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. CHEMSUSCHEM 2019; 12:1743-1762. [PMID: 30702216 DOI: 10.1002/cssc.201802847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Highly dispersed, core-shell Ni@Al2 O3 on activated carbon (AC) catalysts were prepared to develop an effective, external-hydrogen-free fractionation process for various types of lignocellulosic biomass. In a mixture of formic acid, ethanol, and water at 190 °C, the conversion of oak wood produced 23.4 C% lignin-derived phenolic monomers (LDPMs) and highly delignified pulp-rich solid. At an early stage, formic acid acted as a cocatalyst to enhance the delignification by solvolysis, and at a later stage, it acted as a hydrogen source to stabilize the phenolic monomers by hydrodeoxygenation and hydrogenation. Based on the positive correlation between spillover hydrogen on the catalysts and LDPM yields, a new suite of catalyst design criteria was proposed to develop highly active, non-noble-metal based catalysts for realizing economically viable biorefineries. Enzymatic saccharification of the pulp-rich solid indicated that the pulp-rich solid is an excellent source of fermentable sugars.
Collapse
Affiliation(s)
- Jaeyong Park
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Asim Riaz
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Deepak Verma
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Hyun Jeong Lee
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeong Gi-Do, 16419, Republic of Korea
| |
Collapse
|
5
|
Sun Z, Barta K. Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem Commun (Camb) 2018; 54:7725-7745. [PMID: 29926013 DOI: 10.1039/c8cc02937g] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structural complexity of lignocellulose offers unique opportunities for the development of entirely new, energy efficient and waste-free pathways in order to obtain valuable bio-based building blocks. Such sustainable catalytic methods - specifically tailored to address the efficient conversion of abundant renewable starting materials - are necessary to successfully compete, in the future, with fossil-based multi-step processes. In this contribution we give a summary of recent developments in this field and describe our "cleave and couple" strategy, where "cleave" refers to the catalytic deconstruction of lignocellulose to aromatic and aliphatic alcohol intermediates, and "couple" involves the development of novel, sustainable transformations for the formation of C-C and C-N bonds in order to obtain a range of attractive products from lignocellulose.
Collapse
Affiliation(s)
- Zhuohua Sun
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | | |
Collapse
|
6
|
Rohling RY, Hensen EJM, Pidko EA. Multi-site Cooperativity in Alkali-Metal-Exchanged Faujasites for the Production of Biomass-Derived Aromatics. Chemphyschem 2018; 19:446-458. [PMID: 29105288 PMCID: PMC5820756 DOI: 10.1002/cphc.201701058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/03/2017] [Indexed: 12/21/2022]
Abstract
The catalytic Diels-Alder cycloaddition-dehydration (DACD) reaction of furanics with ethylene is a promising route to bio-derived aromatics. The reaction can be catalyzed by alkali-metal-exchanged faujasites. Herein, the results of periodic DFT calculations based on accurate structural models of alkali-metal-exchanged zeolites are presented, revealing the fundamental roles that confinement and the nature of the exchangeable cations in zeolite micropores have in the performance of faujasite-based catalysts in the DACD reaction. Special attention is devoted to analyzing the effect of functional substituents on furanic substrates (furan, 2,5-dimethylfuran, 2,5-furandicarboxylic acid) on the catalyst behavior. It is demonstrated that the conventional reactivity theories of the Diels-Alder chemistry based on simplistic single-site Lewis acidity and substituent effects do not apply if catalytic processes in the multiple-site confined environment of zeolite nanopores are considered. The nature and cooperativity of the interactions between the multiple exchangeable cations and the substrates determine the reaction energetics of the elementary steps involved in the DACD process.
Collapse
Affiliation(s)
- Roderigh Y. Rohling
- Inorganic Materials Chemistry Group, Schuit Institute of CatalysisEindhoven University of Technology, P.O. Box 5135600MBEindhovenThe Netherlands
| | - Emiel J. M. Hensen
- Inorganic Materials Chemistry Group, Schuit Institute of CatalysisEindhoven University of Technology, P.O. Box 5135600MBEindhovenThe Netherlands
| | - Evgeny A. Pidko
- Inorganic Materials Chemistry Group, Schuit Institute of CatalysisEindhoven University of Technology, P.O. Box 5135600MBEindhovenThe Netherlands
- TheoMAT group, Laboratory of Solution Chemistry for Advanced Materials and TechnologiesITMO UniversityLomonosova 9St. Petersburg191002Russia
- Current Address: Inorganic Systems Engineering groupDepartment of Chemical EngineeringFaculty of Applied SciencesDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|