1
|
Wang M, Yin F, Kong L, Yang L, Sun H, Sun Y, Yan G, Han Y, Wang X. Chinmedomics: a potent tool for the evaluation of traditional Chinese medicine efficacy and identification of its active components. Chin Med 2024; 19:47. [PMID: 38481256 PMCID: PMC10935806 DOI: 10.1186/s13020-024-00917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/03/2024] [Indexed: 03/18/2024] Open
Abstract
As an important part of medical science, Traditional Chinese Medicine (TCM) attracts much public attention due to its multi-target and multi-pathway characteristics in treating diseases. However, the limitations of traditional research methods pose a dilemma for the evaluation of clinical efficacy, the discovery of active ingredients and the elucidation of the mechanism of action. Therefore, innovative approaches that are in line with the characteristics of TCM theory and clinical practice are urgently needed. Chinmendomics, a newly emerging strategy for evaluating the efficacy of TCM, is proposed. This strategy combines systems biology, serum pharmacochemistry of TCM and bioinformatics to evaluate the efficacy of TCM with a holistic view by accurately identifying syndrome biomarkers and monitoring their complex metabolic processes intervened by TCM, and finding the agents associated with the metabolic course of pharmacodynamic biomarkers by constructing a bioinformatics-based correlation network model to further reveal the interaction between agents and pharmacodynamic targets. In this article, we review the recent progress of Chinmedomics to promote its application in the modernisation and internationalisation of TCM.
Collapse
Affiliation(s)
- Mengmeng Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicines, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
2
|
Fan X, Gao X, Deng Y, Ma B, Liu J, Zhang Z, Zhang D, Yang Y, Wang C, He B, Nie Q, Ye Z, Liu P, Wen J. Untargeted plasma metabolome identifies biomarkers in patients with extracranial arteriovenous malformations. Front Physiol 2023; 14:1207390. [PMID: 37727659 PMCID: PMC10505742 DOI: 10.3389/fphys.2023.1207390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Objective: This study aimed to investigate the plasma metabolic profile of patients with extracranial arteriovenous malformations (AVM). Method: Plasma samples were collected from 32 AVM patients and 30 healthy controls (HC). Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) was employed to analyze the metabolic profiles of both groups. Metabolic pathway enrichment analysis was performed through Kyoto Encyclopedia of Genes and Genomes (KEGG) database and MetaboAnalyst. Additionally, machine learning algorithms such as Least Absolute Shrinkage and Selection Operator (LASSO) and random forest (RF) were conducted to screen characteristic metabolites. The effectiveness of the serum biomarkers for AVM was evaluated using a receiver-operating characteristics (ROC) curve. Result: In total, 184 differential metabolites were screened in this study, with 110 metabolites in positive ion mode and 74 metabolites in negative mode. Lipids and lipid-like molecules were the predominant metabolites detected in both positive and negative ion modes. Several significant metabolic pathways were enriched in AVMs, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and protein translation. Through machine learning algorithms, nine metabolites were identify as characteristic metabolites, including hydroxy-proline, L-2-Amino-4-methylenepentanedioic acid, piperettine, 20-hydroxy-PGF2a, 2,2,4,4-tetramethyl-6-(1-oxobutyl)-1,3,5-cyclohexanetrione, DL-tryptophan, 9-oxoODE, alpha-Linolenic acid, and dihydrojasmonic acid. Conclusion: Patients with extracranial AVMs exhibited significantly altered metabolic patterns compared to healthy controls, which could be identified using plasma metabolomics. These findings suggest that metabolomic profiling can aid in the understanding of AVM pathophysiology and potentially inform clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xueqiang Fan
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Xixi Gao
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Yisen Deng
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bo Ma
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhaohua Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Dingkai Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Yuguang Yang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Wang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin He
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Jianyan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Liu L, Xu D, Chen F, Cai S, Wei J, Deng J, Zheng J, Jin Q, Lun W. Identification of potential biomarkers for diagnosis of syphilis from the cerebrospinal fluid based on untargeted metabolomic analysis. Mol Omics 2023. [PMID: 37185577 DOI: 10.1039/d3mo00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The infection rate of syphilis continues to rise globally, and the difficulty in diagnosis of neurosyphilis promptly needs to be resolved. More specific and sensitive diagnostic markers for latent syphilis and neurosyphilis should be found. Here the metabolic profiles of 88 cerebrospinal fluid samples from syphilis patients and controls were analyzed by LC/MS-based untargeted metabolomics. In total, 272 metabolites based on 3937 features obtained in ESI- mode and 252 metabolites based on 3799 features in ESI+ mode were identified. The experimental process was evaluated by principal component analysis, partial least squares discriminant analysis, and hierarchical cluster analysis. A clear separation between latent syphilis and neurosyphilis was found. Levels of lipid and linoleic acid metabolites, such as 9-oxo-octadecadienoic acid and 9,10,13-trihydroxyoctadecenoic acid, were increased in syphilis patients. In patients with neurosyphilis, significant changes in levels of 5-hydroxy-L-tryptophan (5-HTP) and acetyl-N-formyl-5-methoxykynurenamine (AFMK) in the tryptophan-kynurenine pathway were also detected. Only one metabolite, theophylline, differed significantly between symptomatic and asymptomatic neurosyphilis patients. Additionally, KEGG analysis revealed significant enrichment of tryptophan metabolism pathways, indicating a high correlation between tryptophan metabolism and syphilis symptoms. Levels of linoleic acid metabolites, 5-HTP, AFMK and theophylline were significantly altered in different patients. The role of these differential metabolites in the development of syphilis is worthy of further exploration. Our results may promote the development of biomarkers for diagnosis of latent syphilis from neurosyphilis, and for that of asymptomatic neurosyphilis from symptomatic neurosyphilis in the future.
Collapse
Affiliation(s)
- Liguo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Dongmei Xu
- Department of Neurology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Fengxin Chen
- Infections Disease Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Shengnan Cai
- Department of infectious diseases, Yantai Qishan Hospital, Yantai, Shandong, 264001, China
| | - Jin Wei
- Department of dermatology and venereology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jiaheng Deng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Jianhua Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Wenhui Lun
- Department of dermatology and venereology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
4
|
Hu Y, Sun H, Yan G, Zhang X, Guan Y, Li D, Wang X. Combination of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and network pharmacology to reveal the mechanism of Shengyu Decoction for treating anemia. J Sep Sci 2023; 46:e2200678. [PMID: 36437813 PMCID: PMC10107194 DOI: 10.1002/jssc.202200678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
Anemia is a common clinical hematological disease with a high incidence, which seriously affects human health. Shengyu Decoction is often used in the treatment of anemia. However, the pharmacodynamic substance basis and therapeutic mechanism are still unclear, which hinders the comprehensive development and utilization of Shengyu Decoction. In this study, 143 compounds were identified in Shengyu Decoction using high-throughput ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, 24 of which were absorbed into the blood. Taking these blood-entering ingredients as the research object, we found through network pharmacology research that ferulic acid, calycosin, and astragaloside A can act on AKT1, MAPK1, and MAPK14, and play a role in treating anemia through PI3K-Akt signaling pathway and Pathways in anemia. Finally, it was demonstrated that the active compound could bind to the core target with good affinity by molecular docking. The research shows that Shengyu Decoction has multi-component, multi-target, and multi-channel effects in the treatment of anemia, which provides a basis for the development and clinical application of Shengyu Decoction.
Collapse
Affiliation(s)
- Yu Hu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Xiwu Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Yu Guan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
| | - Dan Li
- Shenwei Pharmaceutical Group Co. Ltd.ShijiazhuangP. R. China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics LaboratoryDepartment of Pharmaceutical Analysis,Heilongjiang University of Chinese MedicineHarbinP. R. China
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauP. R. China
| |
Collapse
|
5
|
Ouyang Y, Tang L, Hu S, Tian G, Dong C, Lai H, Wang H, Zhao J, Wu H, Zhang F, Yang H. Shengmai san-derived compound prescriptions: A review on chemical constituents, pharmacokinetic studies, quality control, and pharmacological properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154433. [PMID: 36191550 DOI: 10.1016/j.phymed.2022.154433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shengmai San Formula (SMS), composed of Ginseng Radix et Rhizoma, Ophiopogon Radix and Schisandra chinensis Fructus, was a famous formula in Tradition Chinese Medicine (TCM). With the expansion of clinical applications, SMS was developed to different dosage forms, including Shengmai Yin Oral liquid (SMY), Shengmai Capsule (SMC), Shengmai Granule (SMG), Shengmai Injection (SMI) and Dengzhan Shengmai Capsule (DZSMC). These above SMS-derived compound prescriptions (SSCPs) play an important role in the clinical treatment. This review is aimed to providing a comprehensive perspective of SSCP. METHODS The relevant literatures were collected from classical TCM books and a variety of databases, including PubMed, Google Scholar, Science Direct, Springer Link, Web of Science, China National Knowledge Infrastructure, and Wanfang Data. RESULTS The chemical constituents of SSCPs, arrived from the individual medicinal materials including Ginseng Radix et Rhizoma, Ophiopogon Radix, Schisandra chinensis Fructus, Erigerontis Herba, were firstly summarized respectively. Then the pharmacokinetics studies, quality control, and pharmacological properties of SSCPs were all reviewed. The active compounds, pharmacokinetics characterizes, quality control markers, the effects and mechanisms of pharmacology of the different dosage forms of SSCPs were summarized. Furthermore, the research deficiencies of SSCPs and an innovative research paradigm for Chinese materia medica (CMM) formula were proposed. CONCLUSIONS SMS, as a famous CMM formula, has great values in drug research and in clinical treatment especially for cardiocerebrovascular diseases. This article firstly make a comprehensive and systematic review on SMS.
Collapse
Affiliation(s)
- Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghuan Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Caihong Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Huaqing Lai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Sun Y, Kong L, Zhang AH, Han Y, Sun H, Yan GL, Wang XJ. A Hypothesis From Metabolomics Analysis of Diabetic Retinopathy: Arginine-Creatine Metabolic Pathway May Be a New Treatment Strategy for Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:858012. [PMID: 35399942 PMCID: PMC8987289 DOI: 10.3389/fendo.2022.858012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Ye Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
7
|
Huang Y, Liu Z, Liu S, Song F, Hu X, Qin Y, Jin Y. Urine metabolic profiling of dementia rats with vital energy deficiency using ultra-high-performance liquid chromatography coupled with an orbitrap mass spectrometer. J Sep Sci 2021; 45:507-517. [PMID: 34779121 DOI: 10.1002/jssc.202100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/14/2023]
Abstract
Dementia is a chronic and multifactor-induced neurodegenerative disorder that occurs frequently in the elderly with weak constitution and insufficient vital energy. However, the relationship between vital energy deficiency and the occurrence and development of dementia is still unclear. In this study, a rat model of dementia with vital energy deficiency was established through intraperitoneal injection with d-galactose and AlCl3 and combined with exhaustive swimming. Changes in the dementia with vital energy deficiency rat model were assessed by examining behaviors, hippocampal histopathological and biochemical parameters, and serum biochemical parameters. Urine metabolomics based on ultra-high-performance liquid chromatography coupled with an orbitrap mass spectrometer was also used to discover endogenous metabolic profile and disease-related biomarkers and investigate the potential mechanism of dementia with vital energy deficiency. Among the 31 potential biomarkers that were identified, nine involved metabolic pathways. The four main types were phenylalanine, tyrosine and tryptophan metabolism, taurine and hypotaurine metabolism, and citrate cycle and pyrimidine metabolism. The pathogenesis of dementia with vital energy deficiency is mainly neurotoxin accumulation and body aging that leads to oxidative stress injury and loss of neuronal protective substances. Vital energy deficiency inhibits the body's energy metabolism and eventually leads to aggravate the dementia.
Collapse
Affiliation(s)
- Yu Huang
- College of Chemistry, Jilin University, Changchun, P. R. China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Chemical Biology Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Xiuli Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun, P. R. China
| | - Yuhua Qin
- School of food science and Engineering, Hainan Tropical Marine University, Sanya, 572022, China
| | - Yongri Jin
- College of Chemistry, Jilin University, Changchun, P. R. China
| |
Collapse
|
8
|
Wang A, Pi Z, Liu S, Zheng Z, Liu Z, Song F. Mass spectrometry-based urinary metabolomics for exploring the treatment effects of Radix ginseng-Schisandra chinensis herb pair on Alzheimer's disease in rats. J Sep Sci 2021; 44:3158-3166. [PMID: 34110709 DOI: 10.1002/jssc.202100061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Herb pairs are the unique combinations of two relatively fixed herbs, intrinsically convey the basic idea of traditional Chinese medicine prescriptions. The compatibility of Radix ginseng and Schisandra chinensis has been used in traditional Chinese medicine for treating Alzheimer's disease for many years. However, there are few studies on Radix ginseng-Schisandra chinensis herb pair, and the underlying action mechanism is still unclear. In this study, the mechanism of Radix ginseng-Schisandra chinensis herb pair on Alzheimer's disease was investigated by using the mass spectrometry-based urinary metabolomics method. Sixteen urinary endogenous metabolites were identified as potential biomarkers. Meanwhile, 10 biomarkers were quantified with tandem mass spectrometry. The study result showed that the brain pathologic symptoms of model rats were improved and the potential biomarkers were adjusted backward significantly after the herb pair administration. The metabolic pathways linked to the herb pair-regulated endogenous biomarkers included phenylalanine and tyrosine metabolism, tryptophan metabolism, purine metabolism, and so on. The above metabolic pathways reflected that Radix ginseng-Schisandra chinensis herb pair mainly regulates abnormal energy metabolism, reduces inflammation, and regulates gut microbiota and neurotransmitters in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Aimin Wang
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
9
|
Han Y, Sun H, Zhang A, Yan G, Wang XJ. Chinmedomics, a new strategy for evaluating the therapeutic efficacy of herbal medicines. Pharmacol Ther 2020; 216:107680. [PMID: 32956722 PMCID: PMC7500400 DOI: 10.1016/j.pharmthera.2020.107680] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Herbal medicines have accumulated valuable clinical experience in thousands of years of applications in traditional Chinese medicine (TCM) or ethnomedicine. The unique multi-target efficacy on complex diseases made herbal medicines gained a global popularity in recent years. However, the characteristic of multi-component acting on multi-target poses a dilemma for the evaluation of therapeutic efficacy of herbal medicines. Advances in metabolomics enable efficient identification of the various changes in biological systems exposed to different treatments or conditions. The use of serum pharmacochemistry of TCM has significant implications for tackling the major issue in herbal medicines development-pharmacodynamic material basis. Chinmedomics integrates metabolomics and serum pharmacochemistry of TCM to investigate the pharmacodynamic material basis and effective mechanisms of herbal medicines on the basis of TCM syndromes and holds the promise of explaining therapeutic efficacy of herbal medicines in scientific language. In this review, the historical development of chinmedomics from concept formation to successful applications was discussed. We also took the systematic research of Yin Chen Hao Tang (YCHT) as an example to show the research strategy of chinmedomics.
Collapse
|
10
|
Ahmed A, Zeng G, Azhar M, Lin H, Zhang M, Wang F, Zhang H, Jiang D, Yang S, Farooq AD, Choudhary MI, Liu X, Wang Q. Jiawei Shengmai San herbal formula ameliorates diabetic associate cognitive decline by modulating
AKT
and
CREB
in rats. Phytother Res 2020; 34:3249-3261. [PMID: 32619059 DOI: 10.1002/ptr.6773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ayaz Ahmed
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD) Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Mudassar Azhar
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Haiying Lin
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Mijia Zhang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing China
| | - Hong Zhang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
| | - Sijin Yang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Ahsana Dar Farooq
- Hamdard Al‐Majeed College of Eastern Medicine Hamdard University Karachi Pakistan
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Department of Biochemistry, College of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Xinmin Liu
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD) Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Qiong Wang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing China
| |
Collapse
|
11
|
Han F, Xu H, Shen JX, Pan C, Yu ZH, Chen JJ, Zhu XL, Cai YF, Lu YP. RhoA/Rock2/Limk1/cofilin1 pathway is involved in attenuation of neuronal dendritic spine loss by paeonol in the frontal cortex of D-galactose and aluminum-induced Alzheimer’s disease-like rat model. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Zhao Q, Gao X, Yan G, Zhang A, Sun H, Han Y, Li W, Liu L, Wang X. Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome. Front Med 2019; 14:335-356. [DOI: 10.1007/s11684-019-0705-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/25/2019] [Indexed: 01/16/2023]
|
13
|
Yu L, Wu J, Zhai Q, Tian F, Zhao J, Zhang H, Chen W. Metabolomic analysis reveals the mechanism of aluminum cytotoxicity in HT-29 cells. PeerJ 2019; 7:e7524. [PMID: 31523502 PMCID: PMC6716502 DOI: 10.7717/peerj.7524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/21/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aluminum (Al) is toxic to animals and humans. The most common sources of human exposure to Al are food and beverages. The intestinal epithelium is the first barrier against Al-induced toxicity. In this study, HT-29, a human colon cancer cell line, was selected as an in vitro model to evaluate the Al-induced alteration in metabolomic profiles and explore the possible mechanisms of Al toxicity. METHODS MTT assay was performed to determine the half-maximal inhibitory concentration of Al ions. Liquid chromatography-mass spectrometry (LC-MS) was used for metabolomic analysis, and its results were further confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) of nine selected genes. RESULTS Al inhibited the growth of the HT-29 cells, and its half-maximal dose for the inhibition of cell proliferation was found to be four mM. This dose was selected for further metabolomic analysis, which revealed that 81 metabolites, such glutathione (GSH), phosphatidylcholines, phosphatidylethanolamines, and creatine, and 17 metabolic pathways, such as the tricarboxylic acid cycle, pyruvate metabolism, and GSH metabolism, were significantly altered after Al exposure. The RT-qPCR results further confirmed these findings. CONCLUSION The metabolomics and RT-qPCR results indicate that the mechanisms of Al-induced cytotoxicity in HT-29 cells include cellular apoptosis, oxidative stress, and alteration of lipid, energy, and amino acid metabolism.
Collapse
Affiliation(s)
- Leilei Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiangping Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Wuxi, China
| |
Collapse
|
14
|
Li G, Zhang N, Geng F, Liu G, Liu B, Lei X, Li G, Chen X. High-throughput metabolomics and ingenuity pathway approach reveals the pharmacological effect and targets of Ginsenoside Rg1 in Alzheimer's disease mice. Sci Rep 2019; 9:7040. [PMID: 31065079 PMCID: PMC6504884 DOI: 10.1038/s41598-019-43537-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023] Open
Abstract
Ginsenoside Rg1, a natural triterpenoid saponins compound isolated from the Panax species, has been found to possess neuroprotective properties in neurodegenerative diseases such as Alzheimer's disease (AD). However, its pharmacological mechanism on AD has not been studied. In this study, an ultra-performance liquid chromatography combined with quadrupole time of-flight mass spectrometry (UPLC-Q/TOF-MS) based non-targeted metabolomics strategy was performed to explore the mechanism of Ginsenoside Rg1 protecting against AD mice by characterizing metabolic biomarkers and regulation pathways changes. A total of nineteen potential metabolites in serum were discovered and identified to manifest the difference between wild-type mice and triple transgenic mice in control and model group, respectively. Fourteen potential metabolites involved in ten metabolic pathways such as linoleic acid metabolism, arachidonic acid metabolism, tryptophan metabolism and sphingolipid metabolism were affected by Rg1. From the ingenuity pathway analysis (IPA) platform, the relationship between gene, protein, metabolites alteration and protective activity of ginsenoside Rg1 in AD mice are deeply resolved, which refers to increased level of albumin, amino acid metabolism and molecular transport. In addition, quantitative analysis of key enzymes in the disturbed pathways by proteomics parallel reaction was employed to verify changed metabolic pathway under Ginsenoside Rg1. The UPLC-Q/TOF-MS based serum metabolomics method brings about new insights into the pharmacodynamic studies of Ginsenoside Rg1 on AD mice.
Collapse
Affiliation(s)
- Ge Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China
| | - Ning Zhang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Fang Geng
- College of Chemistry & Chemical Engineering, Harbin Normal University, Shida Road No. 1, Limin Economic Development Zone, Harbin, 150025, Heilongjiang Province, China
| | - Guoliang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Bin Liu
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Xia Lei
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Guanghua Street 39, Qianjin District, Jiamusi City, 154007, Heilongjiang Province, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Xuanwei Avenue 138, Jinghong City, 666100, Yunnan Province, China.
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
15
|
Grasso G. Mass spectrometry is a multifaceted weapon to be used in the battle against Alzheimer's disease: Amyloid beta peptides and beyond. MASS SPECTROMETRY REVIEWS 2019; 38:34-48. [PMID: 29905953 DOI: 10.1002/mas.21566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Amyloid-β peptide (Aβ) accumulation and aggregation have been considered for many years the main cause of Alzheimer's disease (AD), and therefore have been the principal target of investigation as well as of the proposed therapeutic approaches (Grasso [2011] Mass Spectrom Rev. 30: 347-365). However, the amyloid cascade hypothesis, which considers Aβ accumulation the only causative agent of the disease, has proven to be incomplete if not wrong. In recent years, actors such as metal ions, oxidative stress, and other cofactors have been proposed as possible co-agents or, in some cases, main causative factors of AD. In this scenario, MS investigation has proven to be fundamental to design possible diagnostic strategies of this elusive disease, as well as to understand the biomolecular mechanisms involved, in the attempt to find a possible therapeutic solution. We review the current applications of MS in the search for possible Aβ biomarkers of AD to help the diagnosis of the disease. Recent examples of the important contributions that MS has given to prove or build theories on the molecular pathways involved with such terrible disease are also reviewed.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
16
|
Gorji N, Moeini R, Memariani Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer's disease: A neuropharmacological review of their bioactive constituents. Pharmacol Res 2017; 129:115-127. [PMID: 29208493 DOI: 10.1016/j.phrs.2017.12.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/13/2023]
Abstract
An increase in the prevalence of Alzheimer's disease (AD) as a multifactorial neurodegenerative disorder is an almost obvious issue in the world. Researches on natural products for finding effective drugs to prevent the disease are in progress. There is special attention to the three types of nuts including almond, hazelnut and walnut in manuscripts of traditional Persian medicine (PM) as the preventive agents against brainatrophy and memory loss. The purpose of this study is a pharmacological review of their bioactive constituents and introducing the value of these nuts as the effective supplements and natural medicinal foods in AD patients. Databases including PubMed and ScienceDirect were searched in title, abstract and keywords from year 2000 to present for AD-related researches on these tree nuts, their major phytochemicals and their mechanisms of action. As result, almond, hazelnut and walnut provide macronutrients, micronutrients, and phytochemicals which affect several pathways in AD pathogenesis such as amyloidogenesis, tau phosphorylation, oxidative stress, cholinergic pathways, and some non-target mechanisms including cholesterol lowering and anti-inflammatory properties, as well as effect on neurogenesis. These nuts are recommended in PM for their brain-protective activity and particularly reversing brain atrophy in case of hazelnut. The therapeutical statements of PM scholars mentioned in their books are based on their clinical observations with support of a long history of experiences. Beyond the molecular activities attributed to the phytochemicals, the use of these tree nuts could be more considered in scientific researches as the effective nutrients for prevention or even management of AD.
Collapse
Affiliation(s)
- Narjes Gorji
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Reihaneh Moeini
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Zahra Memariani
- Traditional Medicine & Medical History Research Center, Health Research Center, Department of Persian Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| |
Collapse
|