1
|
Altınok Ö, Baş M, Gelenli Dolanbay E, Kolgazi M, Mert T, Uslu Ü. Collagen Peptides and Saccharomyces boulardiiCNCM I-745 Attenuate Acetic Acid-Induced Colitis in Rats by Modulating Inflammation and Barrier Permeability. Food Sci Nutr 2025; 13:e70189. [PMID: 40255550 PMCID: PMC12008002 DOI: 10.1002/fsn3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent episodes of inflammation and tissue damage, with limited treatment options. This study aimed to investigate the effects of collagen peptides and Saccharomyces boulardii on acetic acid (AA)-induced colitis. Thirty-six male Sprague-Dawley rats were randomly divided into the following four groups: normal control (NC), colitis control (CC), collagen peptide (CP; 0.6 g/kg/day), and S. boulardii (SB; 250 mg/day). Colitis was induced by an intrarectal administration of AA in all groups except NC, and treatments were administered daily for 7 days. The therapeutic effects were evaluated by assessing the disease activity index (DAI), colon mass index, macroscopic and microscopic tissue damage, histopathological changes, zonula occludens (ZO)-1 protein expression, and myeloperoxidase (MPO) activity. The results showed that CP and SB treatments substantially alleviated DAI scores (p < 0.05) and reduced the colon mass index. Colon macroscopic and microscopic damages improved compared to the CC group (p < 0.01). Histologically, both treatments reduced inflammatory cell infiltration, crypt damage, and ulceration, with CP showing a slightly more pronounced effect. Immunohistochemical analysis revealed significant restoration of ZO-1 protein expression in the treated groups, indicating improvement in intestinal barrier integrity (p < 0.01). Furthermore, MPO activity was reduced in both CP and SB groups, significantly in the SB group (p < 0.01). These findings are consistent with previous studies that highlight the anti-inflammatory and barrier-enhancing effects of collagen peptides and probiotics in UC models.
Collapse
Affiliation(s)
- Öykü Altınok
- Department of Nutrition and DieteticsInstitute of Health Sciences, Acibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
- Department of Nutrition and Dietetics, Faculty of Health SciencesFenerbahçe UniversityIstanbulTurkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health SciencesAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Elif Gelenli Dolanbay
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Meltem Kolgazi
- Department of Physiology, School of MedicineAcibadem Mehmet Ali Aydinlar UniversityIstanbulTurkey
| | - Tugay Mert
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| | - Ünal Uslu
- Department of Histology & Embryology, School of MedicineIstanbul Medeniyet UniversityIstanbulTurkey
| |
Collapse
|
2
|
Mulder PPG, Hooijmans CR, Vlig M, Middelkoop E, Joosten I, Koenen HJPM, Boekema BKHL. Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. J Invest Dermatol 2024; 144:669-696.e10. [PMID: 37806443 DOI: 10.1016/j.jid.2023.09.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Burns are often accompanied by a dysfunctional immune response, which can lead to systemic inflammation, shock, and excessive scarring. The objective of this study was to provide insight into inflammatory pathways associated with burn-related complications. Because detailed information on the various inflammatory mediators is scattered over individual studies, we systematically reviewed animal experimental data for all reported inflammatory mediators. Meta-analyses of 352 studies revealed a strong increase in cytokines, chemokines, and growth factors, particularly 19 mediators in blood and 12 in burn tissue. Temporal kinetics showed long-lasting surges of proinflammatory cytokines in blood and burn tissue. Significant time-dependent effects were seen for IL-1β, IL-6, TGF-β1, and CCL2. The response of anti-inflammatory mediators was limited. Burn technique had a profound impact on systemic response levels. Large burn size and scalds further increased systemic, but not local inflammation. Animal characteristics greatly affected inflammation, for example, IL-1β, IL-6, and TNF-α levels were highest in young, male rats. Time-dependent effects and dissimilarities in response demonstrate the importance of appropriate study design. Collectively, this review presents a general overview of the burn-induced immune response exposing inflammatory pathways that could be targeted through immunotherapy for burn patients and provides guidance for experimental set-ups to advance burn research.
Collapse
Affiliation(s)
- Patrick P G Mulder
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Carlijn R Hooijmans
- Meta-Research Team, Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Vlig
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Esther Middelkoop
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Tissue Function and Regeneration, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bouke K H L Boekema
- Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhang Y, Wang ZL, Deng ZP, Wang ZL, Song F, Zhu LL. An extracellular matrix-inspired self-healing composite hydrogel for enhanced platelet-rich plasma-mediated chronic diabetic wound treatment. Carbohydr Polym 2023; 315:120973. [PMID: 37230636 DOI: 10.1016/j.carbpol.2023.120973] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Diabetes is generally accompanied by difficult-to-heal wounds, which often lead to permanent disability and even death of patients. Because of the abundance of a variety of growth factors, platelet rich plasma (PRP) has been proven to have great clinical potential for diabetic wound treatment. However, how to suppress the explosive release of its active components while realizing adaptability to different wounds remains important for PRP therapy. Here, an injectable, self-healing, and non-specific tissue-adhesive hydrogel formed by oxidized chondroitin sulfate and carboxymethyl chitosan was designed as an encapsulation and delivery platform for PRP. With a dynamic cross-linking structural design, the hydrogel can meet the clinical demands of irregular wounds with controllable gelation and viscoelasticity. Inhibition of PRP enzymolysis as well as sustained release of its growth factors is realized with the hydrogel, enhancing cell proliferation and migration in vitro. Notably, greatly accelerated healing of full thickness wounds of diabetic skins is enabled by promoting the formation of granulation tissues, collagen deposition and angiogenesis as well as reducing inflammation in vivo. This self-healing and extracellular matrix-mimicking hydrogel provides powerful assistance to PRP therapy, enabling its promising applications for the repair and regeneration of diabetic wounds.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China
| | - Zi-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ze-Peng Deng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Lin Wang
- Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Li-Li Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China; Department of Clinical Hematology, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550001, China.
| |
Collapse
|
4
|
Zhou N, Liu YD, Zhang Y, Gu TW, Peng LH. Pharmacological Functions, Synthesis, and Delivery Progress for Collagen as Biodrug and Biomaterial. Pharmaceutics 2023; 15:pharmaceutics15051443. [PMID: 37242685 DOI: 10.3390/pharmaceutics15051443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Collagen has been widely applied as a functional biomaterial in regulating tissue regeneration and drug delivery by participating in cell proliferation, differentiation, migration, intercellular signal transmission, tissue formation, and blood coagulation. However, traditional extraction of collagen from animals potentially induces immunogenicity and requires complicated material treatment and purification steps. Although semi-synthesis strategies such as utilizing recombinant E. coli or yeast expression systems have been explored as alternative methods, the influence of unwanted by-products, foreign substances, and immature synthetic processes have limited its industrial production and clinical applications. Meanwhile, macromolecule collagen products encounter a bottleneck in delivery and absorption by conventional oral and injection vehicles, which promotes the studies of transdermal and topical delivery strategies and implant methods. This review illustrates the physiological and therapeutic effects, synthesis strategies, and delivery technologies of collagen to provide a reference and outlook for the research and development of collagen as a biodrug and biomaterial.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
5
|
Taylor G, Leonard A, Tang JCY, Dunn R, Fraser WD, Virgilio N, Prawitt J, Stevenson E, Clifford T. The effects of collagen peptides on exercise-induced gastrointestinal stress: a randomized, controlled trial. Eur J Nutr 2023; 62:1027-1039. [PMID: 36370176 PMCID: PMC9941265 DOI: 10.1007/s00394-022-03051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE We examined the effects of collagen peptides (CP) supplementation on exercise-induced gastrointestinal (GI) stress. METHODS In a randomized, crossover design, 20 volunteers (16 males: [Formula: see text]O2max, 53.4 ± 5.9 ml·kg-1) completed 3 trials: a non-exercise rest trial, with no supplement (REST) and then an exercise trial with CP (10 g·day-1) or placebo control (CON) supplements, which were consumed for 7 days prior to, and 45 min before, a 70 min run at 70-90% of [Formula: see text]O2max. Outcome measures included urinary lactulose and rhamnose (L/R), intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), anti-LPS antibody, monocyte-chemoattractant protein-1 (MCP-1), interleukin (IL) 6 and 8, cortisol, alkaline phosphatase (ALP) (measured pre, 10 min post and 2 h post) and subjective GI symptoms. RESULTS There were no differences in heart rate, perceived exertion, thermal comfort, or core temperature during exercise in the CP and CON trials (all P > 0.05). I-FABP was higher in CP (2538 ± 1221 pg/ml) and CON (2541 ± 766 pg/ml) vs. REST 2 h post (1893 ± 1941 pg/ml) (both P < 0.05). LPS increased in CON vs. REST 2 h post (+ 71.8 pg/ml; P < 0.05). Anti-LPS antibody decreased in CON and CP vs. REST at post (both P < 0.05). There were no differences in MCP-1, IL-6, and IL-8 between the CP and CON trials (all P > 0.05), and no differences in L/R or GI symptoms between CON and CP (all P > 0.05). CONCLUSION Collagen peptides did not modify exercise-induced changes in inflammation, GI integrity or subjective GI symptoms but LPS was higher in CON 2 h post-exercise and thus future studies may be warranted.
Collapse
Affiliation(s)
- Guy Taylor
- grid.1006.70000 0001 0462 7212Institue of Population Health Sciences, Newcastle University, Newcastle, UK
| | - Amber Leonard
- grid.6571.50000 0004 1936 8542School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU UK
| | - Jonathan C. Y. Tang
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich University Hospital Norfolk, Norfolk, UK
| | - Rachel Dunn
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich University Hospital Norfolk, Norfolk, UK
| | - William D. Fraser
- grid.8273.e0000 0001 1092 7967Norwich Medical School, University of East Anglia, Norwich University Hospital Norfolk, Norfolk, UK
| | | | | | - Emma Stevenson
- grid.1006.70000 0001 0462 7212Institue of Population Health Sciences, Newcastle University, Newcastle, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
6
|
Soriano-Romaní L, Nieto JA, García-Benlloch S. Immunomodulatory role of edible bone collagen peptides on macrophage and lymphocyte cell cultures. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2098936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Juan Antonio Nieto
- AINIA, Parque Tecnológico de Valencia, Paterna (Valencia), Spain
- Research Group in Bioactivity and Immunological Nutrition (BIOINUT), International University of Valencia, Valencia, Spain
| | | |
Collapse
|
7
|
Li X, He Z, Xu J, Su C, Xiao X, Zhang L, Zhang H, Li H. Conformational Changes in Proteins Caused by High-Pressure Homogenization Promote Nanoparticle Formation in Natural Bone Aqueous Suspension. Foods 2022; 11:2869. [PMID: 36140999 PMCID: PMC9498631 DOI: 10.3390/foods11182869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
As a natural calcium resource, animal bone needs to be miniaturized to the nanoscale to improve palatability and absorption capacity. To explore the mechanism of high-pressure homogenization (HPH) in preparing natural bone aqueous nanosuspensions, the relationships between the changes in protein conformation, solubility and quality characteristics of rabbit bone aqueous suspensions (RBAS) prepared by different HPH cycles were studied. The results showed that the improvements in particle size, stability and calcium solubility of RBASs could be mainly attributed to the improvement of protein solubility induced by the changes in protein conformation. HPH treatment led to the denaturation and degradation of protein in rabbit bone, generating soluble peptides and improving the stability of the suspensions by enhancing the surface charge of the particles. When collagen as the main protein was partially degraded, the hydroxyapatite in the bone was crushed into tiny particles. The increase in the particle-specific surface area led to the release of calcium ions, which chelated with the peptides to produce peptide calcium. However, excessive HPH treatment caused the production of protein macromolecular aggregates and affected the quality of RBASs. This study is helpful to promote the application of HPH technology in animal bone nanoprocessing.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jingbing Xu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Chang Su
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xu Xiao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Huanhuan Zhang
- Agricultural Product Processing Institute, Chongqing Academy of Agricultural Science, Chongqing 401329, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
8
|
Immunomodulatory Role of BLG-Derived Peptides Based on Simulated Gastrointestinal Digestion and DC-T Cell from Mice Allergic to Cow's Milk. Foods 2022; 11:foods11101450. [PMID: 35627020 PMCID: PMC9140701 DOI: 10.3390/foods11101450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Peptides, but not whole protein, elicit an allergic reaction since food allergens should be consumed by digestion. In this study, we explored the remaining peptides after simulated digestion of cow’s milk in order to search for β-lactoglobulin (BLG)-derived peptides that could play an immunomodulatory role. As a major allergen in milk, BLG-derived peptides, 109 in total, were identified both from simulated infant and adult digestion in vitro. These peptides were mainly located in four regions, and they were synthesized as five peptides, namely, BLG1–14, BLG24–35, BLG40–60, BLG82–101, and BLG123–139. Then, the effect of peptides on the Caco-2 cell’s transport absorption, the co-stimulatory molecules of DC, and the T-cell phenotype was explored. The results suggested all peptides showed better transport absorption capacity with the apparent permeability coefficient higher than 2 × 10−6 cm·s−1. The ability of BLG40–60 for promoting lamina propria-derived DC cell (LPDC) maturation was observed by the increase in MHC II. Moreover, BLG1–14 and BLG40–60 directed activation of T lymphocytes towards a Th1 phenotype. This is the first report of the immunomodulatory potential of peptides in the sensitization of allergic reaction, and one peptide, BLG40–60, was regarded as an immunomodulatory peptide, one that should be further explored in an animal model in depth.
Collapse
|
9
|
Maia Campos PMBG, Franco RSB, Kakuda L, Cadioli GF, Costa GMD, Bouvret E. Oral Supplementation with Hydrolyzed Fish Cartilage Improves the Morphological and Structural Characteristics of the Skin: A Double-Blind, Placebo-Controlled Clinical Study. Molecules 2021; 26:4880. [PMID: 34443468 PMCID: PMC8401832 DOI: 10.3390/molecules26164880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Collagen and its peptides are natural ingredients used in food supplements and nutricosmetics with the claim of providing benefits for skin health and beauty. In this context, the aim of the present study was to evaluate the clinical efficacy of oral supplementation with hydrolyzed fish cartilage for the improvement of chronological and photoaging-induced skin changes. A total of 46 healthy females aged 45 to 59 years were enrolled and divided into two groups: G1-placebo and G2-oral treatment with hydrolyzed fish cartilage. Measurements of skin wrinkles, dermis echogenicity and thickness, and morphological and structural characteristics of the skin were performed in the nasolabial region of the face before and after a 90-day period of treatment using high-resolution imaging, ultrasound, and reflectance confocal microscopy image analyses. A significant reduction in wrinkles and an increase of dermis echogenicity were observed after a 90-day period of treatment with hydrolyzed fish cartilage compared to the placebo and baseline values. In addition, reflectance confocal microscopy (RCM) image analysis showed improved collagen morphology and reduced elastosis after treatment with hydrolyzed fish cartilage. The present study showed the clinical benefits for the skin obtained with oral supplementation with a low dose of collagen peptides from hydrolyzed fish cartilage.
Collapse
Affiliation(s)
| | - Rodolfo Scarpino Barboza Franco
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (R.S.B.F.); (L.K.); (G.F.C.); (G.M.D.C.)
| | - Letícia Kakuda
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (R.S.B.F.); (L.K.); (G.F.C.); (G.M.D.C.)
| | - Gabriel Fernandes Cadioli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (R.S.B.F.); (L.K.); (G.F.C.); (G.M.D.C.)
| | - Gabriela Maria D’Angelo Costa
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-903, SP, Brazil; (R.S.B.F.); (L.K.); (G.F.C.); (G.M.D.C.)
| | - Elodie Bouvret
- Abyss Ingredients, 860 Route de Caudan, 56850 Caudan, France;
| |
Collapse
|
10
|
George B, Bhatia N, Suchithra T. Burgeoning hydrogel technology in burn wound care: A comprehensive meta-analysis. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
The beneficial activity of curcumin and resveratrol loaded in nanoemulgel for healing of burn-induced wounds. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102360] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Li HL, Liu XT, Huang SM, Xiong YX, Zhang ZR, Zheng YH, Chen QX, Chen QH. Repair function of essential oil from Crocodylus Siamensis (Schneider, 1801) on the burn wound healing via up-regulated growth factor expression and anti-inflammatory effect. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113286. [PMID: 32827658 DOI: 10.1016/j.jep.2020.113286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crocodile oil has been used by traditional physicians around the world to treat wound healing and inflammation. However, the scientific rationale and mechanism behind its use in vivo has not been fully researched. AIMS OF THE STUDY We mainly investigated the mechanism during crocodile oil treatment of up-regulated growth factor expression and anti-inflammatory on burn wound healing in rats. MATERIALS AND METHODS The moisture and nitric oxide (NO) levels in the skin of rats were analyzed in the first 14 days after burn and the changes of the structure of the skin tissues in the wound healing were studied by hematoxylin-eosin (H.E.) staining within 21 days after scald. The inflammatory factor on burn wound healing in rats was dected by ELISA kits and Q-PCR. the expression of a variety of growth factors (TGF-β1, VEGE-α, EGF) and PCNA in the skin tissue after burns was evaluated using immunohistochemistry. The down-regulated phosphorylation of p38 MAPK in the wound healing was confirmed by Western-blot analysis. In addition, TEM was used to observe the ultrastructure of scalded skin. RESULTS This study showed that crocodile oil could significantly reduce the protein and mRNA levels of TNF-α, IL-1β and IL-6. And it was found that the phosphorylation of p38 MAPK was down-regulated in the wound healing (p < 0.05). Meanwhile, crocodile oil can promote the expression of a variety of growth factors (TGF-β1, VEGE-α, EGF) and PCNA in the skin tissue after burns, and promote the repair of collagen fibers in the dermis, preventing the production of melanin and maintain the appearance of repaired skin.
Collapse
Affiliation(s)
- Hua-Liang Li
- School of Life Sciences, Xiamen University, Xiamen, 361005, China; Fujian Tuolong Industrial Limited Company, Xiamen, 361026, China.
| | - Xiao-Tian Liu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Shao-Min Huang
- Centre for Reproductive Medicine, The First Affiliated Hospital of Xiamen, China
| | - You-Xiong Xiong
- Fujian Tuolong Industrial Limited Company, Xiamen, 361026, China
| | - Zi-Ran Zhang
- Fujian Tuolong Industrial Limited Company, Xiamen, 361026, China
| | - Ya-Hui Zheng
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Qing-Xi Chen
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Qiong-Hua Chen
- Centre for Reproductive Medicine, The First Affiliated Hospital of Xiamen, China.
| |
Collapse
|
13
|
Effect of Peptides from Alaska Pollock on Intestinal Mucosal Immunity Function and Purification of Active Fragments. Nutrients 2019; 11:nu11102517. [PMID: 31635335 PMCID: PMC6835260 DOI: 10.3390/nu11102517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 12/23/2022] Open
Abstract
The intestinal mucosal barrier plays an important role in systemic immune functions. This study aimed to find the mechanism of peptide from Alaska Pollock (APP) on intestinal mucosal immunity in mice induced by cyclophosphamide (Cy). Cy-induced decreases of body weight and index of immune organ were significantly improved by APP as compared with Cy group (p < 0.05). APP could promote the secretion of SIgA and IgA on intestinal mucosa (p < 0.05) and mainly had an impact on the final differentiation of IgA+ B cell, thereby promoting the secretion of plasma cells, which can be corroborated by the increases of IL-6 and IL-10 (p < 0.05). APP with high immune activity was separated and two peptides were purified and identified as Gly–Val–Ile–Lys and Ala–Cys–Asn–Gly–Arg. Therefore, APP can be considered as beneficial ingredients to protect the intestinal barrier disruption induced by Cy.
Collapse
|
14
|
Identification and Structure-Activity Relationship of Intestinal Epithelial Barrier Function Protective Collagen Peptides from Alaska Pollock Skin. Mar Drugs 2019; 17:md17080450. [PMID: 31370332 PMCID: PMC6723256 DOI: 10.3390/md17080450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
The effect of collagen peptides (CPs) in intestinal mucosal protection has been approved in both cell and animal models. However, its structure–activity relationship and efficient peptide sequences are unclear, which hinders the in-depth study of its action mechanism and relative nutraceuticals and pharmaceuticals development. In this work, size exclusion chromatography, cation-exchange chromatography, and RP-HPLC were used to separate Alaska pollock skin-derived collagen hydrolysates based on their molecular weight, charge property, and hydrophobicity. The intestinal epithelial barrier function (IEBF) protective effect of separated peptide fractions were evaluated by tumor necrosis factor (TNF)-α-induced Caco-2 cell model. Results indicated that lower molecular weight (500–1000 Da) and higher hydrophilicity of CPs were related to better IEBF protective effect. Two high-efficiency IEBF protective peptide sequences, GPSGPQGSR and GPSGLLGPK with the corresponding molecular weights of 841.41 Da and 824.38 Da, were subsequently identified by UPLC-QToF-MS/MS. Their IEBF protective ability are comparable or even better than the currently used intestinal health supplements glutamine and arginine. The present findings suggested that the hydrophilic CPs, with molecular weight between 500 Da to 1000 Da, should be preferred in IEBF protective peptides preparation. GPSGPQGSR and GPSGLLGPK might have the potential of being IEBF protective ingredients used in intestinal health supplements and drugs.
Collapse
|
15
|
Collagen peptides administration in early enteral nutrition intervention attenuates burn-induced intestinal barrier disruption: Effects on tight junction structure. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
16
|
Vollmer DL, West VA, Lephart ED. Enhancing Skin Health: By Oral Administration of Natural Compounds and Minerals with Implications to the Dermal Microbiome. Int J Mol Sci 2018; 19:E3059. [PMID: 30301271 PMCID: PMC6213755 DOI: 10.3390/ijms19103059] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The history of cosmetics goes back to early Egyptian times for hygiene and health benefits while the history of topical applications that provide a medicinal treatment to combat dermal aging is relatively new. For example, the term cosmeceutical was first coined by Albert Kligman in 1984 to describe topical products that afford both cosmetic and therapeutic benefits. However, beauty comes from the inside. Therefore, for some time scientists have considered how nutrition reflects healthy skin and the aging process. The more recent link between nutrition and skin aging began in earnest around the year 2000 with the demonstrated increase in peer-reviewed scientific journal reports on this topic that included biochemical and molecular mechanisms of action. Thus, the application of: (a) topical administration from outside into the skin and (b) inside by oral consumption of nutritionals to the outer skin layers is now common place and many journal reports exhibit significant improvement for both on a variety of dermal parameters. Therefore, this review covers, where applicable, the history, chemical structure, and sources such as biological and biomedical properties in the skin along with animal and clinical data on the oral applications of: (a) collagen, (b) ceramide, (c) β-carotene, (d) astaxanthin, (e) coenzyme Q10, (f) colostrum, (g) zinc, and (h) selenium in their mode of action or function in improving dermal health by various quantified endpoints. Lastly, the importance of the human skin microbiome is briefly discussed in reference to the genomics, measurement, and factors influencing its expression and how it may alter the immune system, various dermal disorders, and potentially be involved in chemoprevention.
Collapse
Affiliation(s)
- David L Vollmer
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Virginia A West
- 4Life Research, Scientific Research Division, Sandy, UT 84070, USA.
| | - Edwin D Lephart
- Department of Physiology, Developmental Biology and The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
17
|
Zhu S, Huang M, Feng G, Miao Y, Wu H, Zeng M, Lo YM. Gelatin versus its two major degradation products, prolyl-hydroxyproline and glycine, as supportive therapy in experimental colitis in mice. Food Sci Nutr 2018; 6:1023-1031. [PMID: 29983966 PMCID: PMC6021736 DOI: 10.1002/fsn3.639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is an anti-inflammatory dietary component, and its predominant metabolites entering circulation are prolyl-hydroxyproline (Pro-Hyp) and glycine. We evaluated the protective effects of orally administered gelatin, glycine, and Pro-Hyp 10:3:0.8 (w/w/w) against dextran sodium sulfate (DSS)-induced colitis in mice. According to clinical, histological, and biochemical parameters, they exhibited significant activities in the order of gelatin < glycine < Pro-Hyp. Gelatin prevented the DSS-induced increase in interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the colon, rather than in peripheral blood. Glycine and Pro-Hyp attenuated the DSS-induced rise in colonic IL-6 and TNF-α, as well as peripheral IL-1β, IL-6, and TNF-α. Hematologic results show the attenuation of DSS-induced leukocytosis and lymphocytosis by glycine and Pro-Hyp, rather than gelatin. These findings suggest that glycine and Pro-Hyp constitute the material basis for gelatin's anticolitis efficacy, and they have better anticolitis activities and distinct mechanisms of action when ingested as free compounds than as part of gelatin.
Collapse
Affiliation(s)
- Suqin Zhu
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Min Huang
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Guangxin Feng
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Yu Miao
- Department of Clinical LaboratoryThe Affiliated Hospital of Qingdao UniversityQingdaoShandong ProvinceChina
| | - Haohao Wu
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Mingyong Zeng
- College of Food Science and EngineeringOcean University of ChinaQingdaoShandong ProvinceChina
| | - Yangming Martin Lo
- College of Biological Science and EngineeringFuzhou UniversityFujianChina
| |
Collapse
|