1
|
Moreira LDPD, Gomes JVP, Mattar JB, Chaves LO, Martino HSD. Potential of trace elements as supplements for the metabolic control of Type 2 Diabetes Mellitus: A systematic review. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
2
|
Aydın S, Bacanlı M, Anlar HG, Çal T, Arı N, Ündeğer Bucurgat Ü, Başaran AA, Başaran N. Preventive role of Pycnogenol ® against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats. Food Chem Toxicol 2018; 124:54-63. [PMID: 30465898 DOI: 10.1016/j.fct.2018.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol® (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes.
Collapse
Affiliation(s)
- Sevtap Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Merve Bacanlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Hatice Gül Anlar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
| | - Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Nuray Arı
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Arif Ahmet Başaran
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Nursen Başaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|