1
|
Chen J, He K, Li X, Wang M, Yang Z, Wang Z, Wang K, Jiang W, Zhao L, Cui M. Overexpression of FOS enhances the malignant potential of eutopic endometrial stromal cells in patients with endometriosis‑associated ovarian cancer. Oncol Rep 2025; 53:45. [PMID: 39981914 PMCID: PMC11851058 DOI: 10.3892/or.2025.8878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2025] Open
Abstract
Endometrial cysts of the ovary (EMC) may develop into endometriosis (EM)‑associated ovarian cancer over time (EAOC), but the pathogenesis of this disease has not been determined. In the present study, RNA sequencing was used to identify a feasible biomarker, and the molecular function of this biomarker in eutopic endometrial cells from EAOC and EMC patients was evaluated to explore the potential mechanism related to EAOC and orthotopic endometrial tissue. RNA sequencing was performed on 5 EAOC and 4 EMC tissue samples, and differential expression analysis was performed. To identify biomarkers, differentially expressed genes were subjected to protein‑protein interaction network design, Gene Ontology pathway enrichment, and Gene Set Enrichment Analysis pathway enrichment. The expression of FOS in the endometrium was detected via immunohistochemical staining. Lv‑FOS was utilized to upregulate FOS in human endometrial stromal cells (hEnSCs), and Cell Counting Kit‑8, colony formation and scratch assays were performed to assess cell viability, proliferation and migration, respectively. Western blotting was used to determine protein expression. In total, 249 genes, including FOS, were differentially expressed. Pathway enrichment analysis demonstrated that the MAPK, AP‑1, ERK and other signaling pathways were involved in the EMC‑to‑EAOC conversion. FOS upregulation in hEnSCs increased cell viability, proliferation and migration. Western blot results revealed that after FOS expression was inhibited, P21 expression was upregulated, and CDK4, Cyclin D1, p‑Stat3, MMP2 and MMP9 expression was downregulated. In conclusion, mitosis and the cell cycle were found to affect the progression of EMC to EAOC. The expression of FOS, a novel biomarker, was identified to enhance the malignant potential of eutopic endometrial stromal cells in patients with EM‑associated ovarian cancer.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xin Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Mengqi Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weiqiang Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
2
|
Zhang DJ, Yuan ZQ, Yue YX, Zhang M, Wu WJ, Yang CG, Qiu WW. Synthesis and antibacterial activities of heterocyclic ring-fused 20(S)-protopanaxadiol derivatives. Bioorg Med Chem 2024; 112:117901. [PMID: 39232465 DOI: 10.1016/j.bmc.2024.117901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Multidrug-resistant (MDR) bacterial infections are becoming a life-threatening issue in public health; therefore, it is urgent to develop novel antibacterial agents for treating infections caused by MDR bacteria. The 20(S)-protopanaxadiol (PPD) derivative 9 was identified as a novel antibacterial hit compound in screening of our small synthetic natural product-like (NPL) library. A series of novel PPD derivatives with heterocyclic rings fused at the C-2 and C-3 positions of the A-ring were synthesized and their antibacterial activities against Staphylococcus aureus (S. aureus) Newman strain and MDR S. aureus strains (USA300, NRS-1, NRS-70, NRS-100, NRS-108, NRS-271, XJ017, and XJ036) were evaluated. Among these compounds, quinoxaline derivative 56 (SH617) exhibited the highest activity with MICs of 0.5-4 μg/mL against the S. aureus Newman strain and the eight MDR S. aureus strains. Its antibacterial activity was comparable to that of the positive control, vancomycin. In the zebrafish, 56 revealed no obvious toxicity even at a high administered dose. In vivo, following a lethal infection induced by USA300 strains in zebrafish, 56 exhibited significantly increased survival rates in a dose-dependent manner.
Collapse
Affiliation(s)
- De-Jie Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zi-Qi Yuan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Xin Yue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Min Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Wen-Juan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
3
|
Iranpanah A, Majnooni MB, Biganeh H, Amirian R, Rastegari-Pouyani M, Filosa R, Cheang WS, Fakhri S, Khan H. Exploiting new strategies in combating head and neck carcinoma: A comprehensive review on phytochemical approaches passing through PI3K/Akt/mTOR signaling pathway. Phytother Res 2024; 38:3736-3762. [PMID: 38776136 DOI: 10.1002/ptr.8228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
Recently, malignant neoplasms have growingly caused human morbidity and mortality. Head and neck cancer (HNC) constitutes a substantial group of malignancies occurring in various anatomical regions of the head and neck, including lips, mouth, throat, larynx, nose, sinuses, oropharynx, hypopharynx, nasopharynx, and salivary glands. The present study addresses the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway as a possible therapeutic target in cancer therapy. Finding new multitargeting agents capable of modulating PI3K/Akt/mTOR and cross-linked mediators could be viewed as an effective strategy in combating HNC. Recent studies have introduced phytochemicals as multitargeting agents and rich sources for finding and developing new therapeutic agents. Phytochemicals have exhibited immense anticancer effects, including targeting different stages of HNC through the modulation of several signaling pathways. Moreover, phenolic/polyphenolic compounds, alkaloids, terpenes/terpenoids, and other secondary metabolites have demonstrated promising anticancer activities because of their diverse pharmacological and biological properties like antiproliferative, antineoplastic, antioxidant, and anti-inflammatory activities. The current review is mainly focused on new therapeutic strategies for HNC passing through the PI3K/Akt/mTOR pathway as new strategies in combating HNC.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hossein Biganeh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roshanak Amirian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
4
|
Chen J, Wu S, Wang J, Han C, Zhao L, He K, Jia Y, Cui M. MCM10: An effective treatment target and a prognostic biomarker in patients with uterine corpus endometrial carcinoma. J Cell Mol Med 2023; 27:1708-1724. [PMID: 37246638 PMCID: PMC10273062 DOI: 10.1111/jcmm.17772] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023] Open
Abstract
Molecular profiling has been applied for uterine corpus endometrial carcinoma (UCEC) management for many years. The aim of this study was to explore the role of MCM10 in UCEC and construct its overall survival (OS) prediction models. Data from TCGA, GEO, cbioPotal and COSMIC databases and the methods, such as GO, KEGG, GSEA, ssGSEA and PPI, were employed to bioinformatically detect the effects of MCM10 on UCEC. RT-PCR, Western blot and immunohistochemistry were used to validate the effects of MCM10 on UCEC. Based on Cox regression analysis using the data from TCGA and our clinical data, two OS prediction models for UCEC were established. Finally, the effects of MCM10 on UCEC were detected in vitro. Our study revealed that MCM10 was variated and overexpressed in UCEC tissue and involved in DNA replication, cell cycle, DNA repair and immune microenvironment in UCEC. Moreover, silencing MCM10 significantly inhibited the proliferation of UCEC cells in vitro. Importantly, based on MCM10 expression and clinical features, the OS prediction models were constructed with good accuracy. MCM10 could be an effective treatment target and a prognostic biomarker for UCEC patients. The OS prediction models might help establish the strategies of follow-up and treatment for UCEC patients.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
| | - Shan Wu
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics (Ministry of Education)Women's Hospital, Zhejiang University, School of MedicineHangzhouChina
| | - Junwei Wang
- Department of Obstetrics and GynecologyThe First Hospital of Jilin UniversityChangchunChina
| | - Chunying Han
- Third Department of Gynecological OncologyJilin Cancer HospitalChangchunChina
| | - Lijing Zhao
- Department of Rehabilitation, School of NursingJilin UniversityChangchunChina
| | - Kang He
- Department of Rehabilitation, School of NursingJilin UniversityChangchunChina
| | - Yan Jia
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
| | - Manhua Cui
- Department of Gynecology and ObstetricsThe Second Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
5
|
Chen J, Zhao S, Tan W, Wang T, Wu S, Wang C, Jiang Y, Zhou T, Zhang Z, Zhao L. Attenuated Salmonella carrying plasmid co-expressing HPV16 L1 and siRNA-E6 for cervical cancer therapy. Sci Rep 2021; 11:20083. [PMID: 34635698 PMCID: PMC8505555 DOI: 10.1038/s41598-021-99425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus (HPV) infection is the major etiological factor for cervical cancer. HPV prophylactic vaccines based on L1 virus-like particles have been considered as an effective prevention method. However, existing recombination vaccines are too expensive for developing countries. DNA vaccines might be a lower-cost and effective alternative. In this study, a plasmid (pcDNA3.1-HPV16-L1) and a co-expressing plasmid (pcDNA3.1-HPV16-L1-siE6) carried by attenuated Salmonella were constructed and their prevention and treatment effect on cervical cancer were observed, respectively. The results showed that pcDNA3.1-HPV16-L1 carried by attenuated Salmonella could induce the production of HPV16-L1 antibodies, IL-2 and INF-γ in mice serum, which presented its prevention effect on HPV. Subsequently, E6 and E7 gene silencing by pCG-siE6 inhibited the growth of cervical cancer both in vitro and in vivo. Furthermore, L1 up-regulation and E6/E7 down-regulation caused by co-expressing plasmid (pcDNA3.1-HPV16-L1-siE6) contributed to a significant anti-tumor effect on the mice. This study suggests that pcDNA3.1-HPV16-L1-siE6 carried by attenuated Salmonella has a synergistic effect of immune regulation and RNA interference in cervical cancer treatment.
Collapse
Affiliation(s)
- Junyu Chen
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
- Department of Gynecology, Second Hospital, Jilin University, Changchun, China
| | - Shuhua Zhao
- Department of Gynecology, Second Hospital, Jilin University, Changchun, China
| | - Wenxi Tan
- Department of Gynecology, Second Hospital, Jilin University, Changchun, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Shan Wu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University, School of Medicine, Zhejiang, China
| | - Changshuai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Yu Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Tuo Zhou
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Zhuo Zhang
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, China.
| |
Collapse
|
6
|
Huang GJ, Yang BB. Identification of core miRNA prognostic markers in patients with laryngeal cancer using bioinformatics analysis. Eur Arch Otorhinolaryngol 2020; 278:1613-1626. [PMID: 32789639 DOI: 10.1007/s00405-020-06275-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Lots of studies indicated that many microRNAs (miRNAs) are associated with the prognosis of patients with laryngeal cancer (LC). The objective of our study is to identify potential core miRNAs associated with the pathogenesis and prognosis of LC. METHODS Using the Cancer Genome Atlast database, we identified 70 differentially expressed miRNAs between LC tumor specimens and non-tumor specimens. Then Cox regression analyses and the least absolute shrinkage and selection operator regression signature were performed to detect miRNA prognostic markers. A nomogram integrating miRNA prognostic markers was constructed to predict overall survival (OS) for LC patients. The potential target genes of the key miRNA were predicted by miRTarBase and miRDB databases. Subsequently, their potential functions were revealed by gene ontology annotation and kyoto encyclopedia of genes and genomes pathway enrichment analysis. Related biological pathways of the key target gene involved in LC were detected through gene set enrichment analysis (GSEA). RESULTS A prognostic miRNA signature was constructed. The up-regulated miR-105-1 was related to a worse OS (p = 0.043), which suggested that miR-105-1 may likely be the key miRNA prognostic marker. Survival analyses and paired expression analyses of target genes indicated that ENDOU may be the key target gene. Finally, we conducted GSEA to elucidate the pathways enriched between low- and high-ENDOU expression datasets. CONCLUSION Our findings might bring some new light on the pathogenesis of LC. Then, it might facilitate doctors to predict the prognosis and improve treatment outcomes for LC patients. However, the behaviors of LC are relatively heterogeneous, and the TCGA database cannot provide detailed information about the subsites and treatment modalities of LC. Further molecular biological experiments and clinical investigations would be required to confirm this conclusion.
Collapse
Affiliation(s)
- Guan-Jiang Huang
- Department of Otorhinolaryngology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Bei-Bei Yang
- Department of Otorhinolaryngology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
7
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
8
|
Radix et Rhizoma Ginseng chemoprevents both initiation and promotion of cutaneous carcinoma by enhancing cell-mediated immunity and maintaining redox homeostasis. J Ginseng Res 2019; 44:580-592. [PMID: 32617038 PMCID: PMC7322735 DOI: 10.1016/j.jgr.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/17/2019] [Accepted: 05/10/2019] [Indexed: 01/22/2023] Open
Abstract
Background Radix et Rhizoma Ginseng (thereafter called ginseng) has been used as a medicinal herb for thousands of years to maintain people's physical vitality and is also a non–organ-specific cancer preventive and therapeutic traditional medicine in several epidemiologic and preclinical studies. Owing to few toxic side effects and strong enhancement on body immunity, ginseng has admirable application potential and value in cancer chemoprevention. The study aims at investigating the chemopreventive effects of ginseng on cutaneous carcinoma and the underlying mechanisms. Methods The mouse skin cancer model was induced by 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol-13-acetate. Ultraperformance liquid chromatography/mass spectrometry was used for identifying various ginsenosides, the main active ingredients of ginseng. Comprehensive approaches (including network pharmacology, bioinformatics, and experimental verification) were used to explore the potential targets of ginseng. Results Ginseng treatment inhibited cutaneous carcinoma in terms of initiation and promotion. The content of Rb1, Rb2, Rc, and Rd ginsenosides was the highest in both mouse blood and skin tissues. Ginseng and its active components well maintained the redox homeostasis and modulated the immune response in the model. Specifically, ginseng treatment inhibited the initiation of skin cancer by enhancing T-cell–mediated immune response through upregulating HSP27 expression and inhibited the promotion of skin cancer by maintaining cellular redox homeostasis through promoting nuclear translocation of Nrf2. Conclusion According to the study results, ginseng can be potentially used for cutaneous carcinoma as a chemopreventive agent by enhancing cell-mediated immunity and maintaining redox homeostasis with multiple components, targets, and links.
Collapse
|
9
|
Xu H, Hao Y, Xu L, Chen L, Xu F. Tanshinone sensitized the antitumor effects of irradiation on laryngeal cancer via JNK pathway. Cancer Med 2018; 7:5187-5193. [PMID: 30239172 PMCID: PMC6198231 DOI: 10.1002/cam4.1781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
Laryngeal cancer is a common cancer occurred in the head and neck. Irradiation sensitivity is a problem affecting the treatment of laryngeal cancer. Tanshinone IIA has been reported to play an important role in treating multiple diseases; yet, whether Tanshinone IIA can be an irradiation sensitizer has not been reported. Clonogenic assay, annexin-V/propidium iodide double-staining assay, and Cell Counting Kit-8 assay were performed to detect cell survival, proliferation, apoptosis, and viability. Mouse laryngeal cancer xenograft model was established and subjected to tumor size analysis. Tanshinone IIA treatment increased the irradiation sensitivity of laryngeal cancer cells by reducing cell survival, viability and proliferation, and increasing cell apoptosis. Tanshinone IIA treatment increased the survival period of mice in the in vivo laryngeal cancer model, evidenced by decreased growth and weight of tumors, which was possibly mediated through the JNK pathway. Tanshinone IIA increases the sensitivity to irradiation in laryngeal cancer cells and in vivo laryngeal cancer model, suggesting that Tanshinone IIA can be a therapeutic antitumor agent for treating laryngeal cancer.
Collapse
Affiliation(s)
- Hui Xu
- Stomatology DepartmentAffiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai CityChina
| | - Yu‐li Hao
- Stomatology DepartmentAffiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai CityChina
| | - Li‐na Xu
- Otorhinolaryngology DepartmentYantai Fushan People's HospitalYantai CityChina
| | - Liang Chen
- Otorhinolaryngology DepartmentAffiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai CityChina
| | - Feng‐wei Xu
- Yantai Stomatological HospitalYantai CityChina
| |
Collapse
|