1
|
高 朝, 杨 逍, 刘 利, 王 月, 朱 灵, 周 金, 刘 勇, 杨 柯. [Inertial label-free sorting and chemotaxis of polymorphonuclear neutrophil in sepsis patients based on microfluidic technology]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1217-1226. [PMID: 38151946 PMCID: PMC10753322 DOI: 10.7507/1001-5515.202304002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/30/2023] [Indexed: 12/29/2023]
Abstract
Reduced chemotactic migration of polymorphonuclear neutrophil (PMN) in sepsis patients leads to decreased bacterial clearance and accelerates the progression of sepsis disease. Quantification of PMN chemotaxis in sepsis patients can help characterize the immune health of sepsis patients. Microfluidic microarrays have been widely used for cell chemotaxis analysis because of the advantages of low reagent consumption, near-physiological environment, and visualization of the migration process. Currently, the study of PMN chemotaxis using microfluidic chips is mainly limited by the cumbersome cell separation operation and low throughput of microfluidic chips. In this paper, we first designed an inertial cell sorting chip to achieve label-free separation of the two major cell types by using the basic principle that leukocytes (mainly granulocytes, lymphocytes and monocytes) and erythrocytes move to different positions of the spiral microchannel when they move in the spiral microchannel under different strength of inertial force and Dean's resistance. Subsequently, in this paper, we designed a multi-channel cell migration chip and constructed a microfluidic PMN inertial label-free sorting and chemotaxis analysis platform. The inertial cell sorting chip separates leukocyte populations and then injects them into the multi-channel cell migration chip, which can complete the chemotaxis test of PMN to chemotactic peptide (fMLP) within 15 min. The remaining cells, such as monocytes with slow motility and lymphocytes that require pre-activation with proliferative culture, do not undergo significant chemotactic migration. The test results of sepsis patients ( n=6) and healthy volunteers ( n=3) recruited in this study showed that the chemotaxis index (CI) and migration velocity ( v) of PMN from sepsis patients were significantly weaker than those from healthy volunteers. In conclusion, the microfluidic PMN inertial label-free sorting and chemotaxis analysis platform constructed in this paper can be used as a new tool for cell label-free sorting and migration studies.
Collapse
Affiliation(s)
- 朝茹 高
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 逍 杨
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 利娟 刘
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 月 王
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 灵 朱
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - 金华 周
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| | - 勇 刘
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所(合肥 230031)Anhui Institute of Optics and Precision Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - 柯 杨
- 安徽医科大学 生物医学工程学院 (合肥 230032)School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
2
|
Ramadan Q, Hazaymeh R, Zourob M. Immunity-on-a-Chip: Integration of Immune Components into the Scheme of Organ-on-a-Chip Systems. Adv Biol (Weinh) 2023; 7:e2200312. [PMID: 36866511 DOI: 10.1002/adbi.202200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Indexed: 03/04/2023]
Abstract
Studying the immune system in vitro aims to understand how, when, and where the immune cells migrate/differentiate and respond to the various triggering events and the decision points along the immune response journey. It becomes evident that organ-on-a-chip (OOC) technology has a superior capability to recapitulate the cell-cell and tissue-tissue interaction in the body, with a great potential to provide tools for tracking the paracrine signaling with high spatial-temporal precision and implementing in situ real-time, non-destructive detection assays, therefore, enabling extraction of mechanistic information rather than phenotypic information. However, despite the rapid development in this technology, integration of the immune system into OOC devices stays among the least navigated tasks, with immune cells still the major missing components in the developed models. This is mainly due to the complexity of the immune system and the reductionist methodology of the OOC modules. Dedicated research in this field is demanded to establish the understanding of mechanism-based disease endotypes rather than phenotypes. Herein, we systemically present a synthesis of the state-of-the-art of immune-cantered OOC technology. We comprehensively outlined what is achieved and identified the technology gaps emphasizing the missing components required to establish immune-competent OOCs and bridge these gaps.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Rana Hazaymeh
- Almaarefa University, Diriyah, 13713, Kingdom of Saudi Arabia
| | | |
Collapse
|
3
|
Van Os L, Engelhardt B, Guenat OT. Integration of immune cells in organs-on-chips: a tutorial. Front Bioeng Biotechnol 2023; 11:1191104. [PMID: 37324438 PMCID: PMC10267470 DOI: 10.3389/fbioe.2023.1191104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Viral and bacterial infections continue to pose significant challenges for numerous individuals globally. To develop novel therapies to combat infections, more insight into the actions of the human innate and adaptive immune system during infection is necessary. Human in vitro models, such as organs-on-chip (OOC) models, have proven to be a valuable addition to the tissue modeling toolbox. The incorporation of an immune component is needed to bring OOC models to the next level and enable them to mimic complex biological responses. The immune system affects many (patho)physiological processes in the human body, such as those taking place during an infection. This tutorial review introduces the reader to the building blocks of an OOC model of acute infection to investigate recruitment of circulating immune cells into the infected tissue. The multi-step extravasation cascade in vivo is described, followed by an in-depth guide on how to model this process on a chip. Next to chip design, creation of a chemotactic gradient and incorporation of endothelial, epithelial, and immune cells, the review focuses on the hydrogel extracellular matrix (ECM) to accurately model the interstitial space through which extravasated immune cells migrate towards the site of infection. Overall, this tutorial review is a practical guide for developing an OOC model of immune cell migration from the blood into the interstitial space during infection.
Collapse
Affiliation(s)
- Lisette Van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Olivier T. Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Yang X, Gao C, Liu Y, Zhu L, Yang K. Simplified Cell Magnetic Isolation Assisted SC 2 Chip to Realize "Sample in and Chemotaxis Out": Validated by Healthy and T2DM Patients' Neutrophils. MICROMACHINES 2022; 13:1820. [PMID: 36363840 PMCID: PMC9692824 DOI: 10.3390/mi13111820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Neutrophil migration in tissues critically regulates the human immune response and can either play a protective role in host defense or cause health problems. Microfluidic chips are increasingly applied to study neutrophil migration, attributing to their advantages of low reagent consumption, stable chemical gradients, visualized cell chemotaxis monitoring, and quantification. Most chemotaxis chips suffered from low throughput and fussy cell separation operations. We here reported a novel and simple "sample in and chemotaxis out" method for rapid neutrophils isolation from a small amount of whole blood based on a simplified magnetic method, followed by a chemotaxis assay on a microfluidic chip (SC2 chip) consisting of six cell migration units and six-cell arrangement areas. The advantages of the "sample in and chemotaxis out" method included: less reagent consumption (10 μL of blood + 1 μL of magnetic beads + 1 μL of lysis buffer); less time (5 min of cell isolation + 15 min of chemotaxis testing); no ultracentrifugation; more convenient; higher efficiency; high throughput. We have successfully validated the approach by measuring neutrophil chemotaxis to frequently-used chemoattractant (i.e., fMLP). The effects of D-glucose and mannitol on neutrophil chemotaxis were also analyzed. In addition, we demonstrated the effectiveness of this approach for testing clinical samples from diabetes mellitus type 2 (T2DM) patients. We found neutrophils' migration speed was higher in the "well-control" T2DM than in the "poor-control" group. Pearson coefficient analysis further showed that the migration speed of T2DM was negatively correlated with physiological indicators, such as HbA1c (-0.44), triglyceride (-0.36), C-reactive protein (-0.28), and total cholesterol (-0.28). We are very confident that the developed "sample in and chemotaxis out" method was hoped to be an attractive model for analyzing the chemotaxis of healthy and disease-associated neutrophils.
Collapse
Affiliation(s)
- Xiao Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Chaoru Gao
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yong Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Zhu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
5
|
Ren J, Wang N, Guo P, Fan Y, Lin F, Wu J. Recent advances in microfluidics-based cell migration research. LAB ON A CHIP 2022; 22:3361-3376. [PMID: 35993877 DOI: 10.1039/d2lc00397j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell migration is crucial for many biological processes, including normal development, immune response, and tissue homeostasis and many pathological processes such as cancer metastasis and wound healing. Microfluidics has revolutionized the research in cell migration since its inception as it reduces the cost of studies and allows precise manipulation of different parameters that affect cell migratory response. Over the past decade, the field has made great strides in many directions, such as techniques for better control of the cellular microenvironment, application-oriented physiological-like models, and machine-assisted cell image analysis methods. Here we review recent developments in the field of microfluidic cell migration through the following aspects: 1) the co-culture models for studying host-pathogen interactions at single-cell resolution; 2) the spatiotemporal manipulation of the chemical gradients guiding cell migration; 3) the organ-on-chip models to study cell transmigration; and 4) the deep learning image processing strategies for cell migration data analysis. We further discuss the challenges, possible improvement and future perspectives of using microfluidic techniques to study cell migration.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Piao Guo
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang University Cancer Center, Hangzhou, 310003, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Heydarian M, Rühl E, Rawal R, Kozjak-Pavlovic V. Tissue Models for Neisseria gonorrhoeae Research—From 2D to 3D. Front Cell Infect Microbiol 2022; 12:840122. [PMID: 35223556 PMCID: PMC8873371 DOI: 10.3389/fcimb.2022.840122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.
Collapse
|
7
|
Lin R, Li L. Innate Neutrophil Memory Dynamics in Disease Pathogenesis. Handb Exp Pharmacol 2021; 276:43-64. [PMID: 34486096 DOI: 10.1007/164_2021_538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophils, the most abundant leukocytes in circulation and the first responders to infection and inflammation, closely modulate both acute and chronic inflammatory processes. Resting neutrophils constantly patrol vasculature and migrate to tissues when challenges occur. When infection and/or inflammation recede, tissue neutrophils will be subsequently cleaned up by macrophages which collectively contribute to the resolution of inflammation. While most studies focus on the anti-microbial function of neutrophils including phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation, recent research highlighted additional contributions of neutrophils beyond simply controlling infectious agents. Neutrophils with resolving characteristics may alter the activities of neighboring cells and facilitate inflammation resolution, modulate long-term macrophage and adaptive immune responses, therefore having important impacts on host pathophysiology. The focus of this chapter is to provide an updated assessment of recent progress in the emerging field of neutrophil programming and memory in the context of both acute and chronic diseases.
Collapse
Affiliation(s)
- RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Moarefian M, Davalos RV, Burton MD, Jones CN. Electrotaxis-on-Chip to Quantify Neutrophil Migration Towards Electrochemical Gradients. Front Immunol 2021; 12:674727. [PMID: 34421891 PMCID: PMC8379007 DOI: 10.3389/fimmu.2021.674727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Electric fields are generated in vivo in a variety of physiologic and pathologic settings, including wound healing and immune response to injuries to epithelial barriers (e.g. lung pneumocytes). Immune cells are known to migrate towards both chemical (chemotaxis), physical (mechanotaxis) and electric stimuli (electrotaxis). Electrotaxis is the guided migration of cells along electric fields, and has previously been reported in T-cells and cancer cells. However, there remains a need for engineering tools with high spatial and temporal resolution to quantify EF guided migration. Here we report the development of an electrotaxis-on-chip (ETOC) platform that enables the quantification of dHL-60 cell, a model neutrophil-like cell line, migration toward both electrical and chemoattractant gradients. Neutrophils are the most abundant white blood cells and set the stage for the magnitude of the immune response. Therefore, developing engineering tools to direct neutrophil migration patterns has applications in both infectious disease and inflammatory disorders. The ETOC developed in this study has embedded electrodes and four migration zones connected to a central cell-loading chamber with migration channels [10 µm X 10 µm]. This device enables both parallel and competing chemoattractant and electric fields. We use our novel ETOC platform to investigate dHL-60 cell migration in three biologically relevant conditions: 1) in a DC electric field; 2) parallel chemical gradient and electric fields; and 3) perpendicular chemical gradient and electric field. In this study we used differentiated leukemia cancer cells (dHL60 cells), an accepted model for human peripheral blood neutrophils. We first quantified effects of electric field intensities (0.4V/cm-1V/cm) on dHL-60 cell electrotaxis. Our results show optimal migration at 0.6 V/cm. In the second scenario, we tested whether it was possible to increase dHL-60 cell migration to a bacterial signal [N-formylated peptides (fMLP)] by adding a parallel electric field. Our results show that there was significant increase (6-fold increase) in dHL60 migration toward fMLP and cathode of DC electric field (0.6V/cm, n=4, p-value<0.005) vs. fMLP alone. Finally, we evaluated whether we could decrease or re-direct dHL-60 cell migration away from an inflammatory signal [leukotriene B4 (LTB4)]. The perpendicular electric field significantly decreased migration (2.9-fold decrease) of dHL60s toward LTB4vs. LTB4 alone. Our microfluidic device enabled us to quantify single-cell electrotaxis velocity (7.9 µm/min ± 3.6). The magnitude and direction of the electric field can be more precisely and quickly changed than most other guidance cues such as chemical cues in clinical investigation. A better understanding of EF guided cell migration will enable the development of new EF-based treatments to precisely direct immune cell migration for wound care, infection, and other inflammatory disorders.
Collapse
Affiliation(s)
- Maryam Moarefian
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Michael D. Burton
- Department of Neuroscience, Neuroimmunology and Behavior Group, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
| | - Caroline N. Jones
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
9
|
Choi JR. Advances in single cell technologies in immunology. Biotechniques 2020; 69:226-236. [PMID: 32777935 DOI: 10.2144/btn-2020-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
The immune system is composed of heterogeneous populations of immune cells that regulate physiological processes and protect organisms against diseases. Single cell technologies have been used to assess immune cell responses at the single cell level, which are crucial for identifying the causes of diseases and elucidating underlying biological mechanisms to facilitate medical therapy. In the present review we first discuss the most recent advances in the development of single cell technologies to investigate cell signaling, cell-cell interactions and cell migration. Each technology's advantages and limitations and its applications in immunology are subsequently reviewed. The latest progress toward commercialization, the remaining challenges and future perspectives for single cell technologies in immunology are also briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
10
|
Satti S, Deng P, Matthews K, Duffy SP, Ma H. Multiplexed end-point microfluidic chemotaxis assay using centrifugal alignment. LAB ON A CHIP 2020; 20:3096-3103. [PMID: 32748936 DOI: 10.1039/d0lc00311e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A fundamental challenge to multiplexing microfluidic chemotaxis assays at scale is the requirement for time-lapse imaging to continuously track migrating cells. Drug testing and drug screening applications require the ability to perform hundreds of experiments in parallel, which is not feasible for assays that require continuous imaging. To address this limitation, end-point chemotaxis assays have been developed using fluid flow to align cells in traps or sieves prior to cell migration. However, these methods require precisely controlled fluid flow to transport cells to the correct location without undesirable mechanical stress, which introduce significant set up time and design complexity. Here, we describe a microfluidic device that eliminates the need for precise flow control by using centrifugation to align cells at a common starting point. A chemoattractant gradient is then formed using passive diffusion prior to chemotaxis in an incubated environment. This approach provides a simple and scalable approach to multiplexed chemotaxis assays. Centrifugal alignment is also insensitive to cell geometry, enabling this approach to be compatible with primary cell samples that are often heterogeneous. We demonstrate the capability of this approach by assessing chemotaxis of primary neutrophils in response to an fMLP (N-formyl-met-leu-phe) gradient. Our results show that cell alignment by centrifugation offers a potential avenue to develop scalable end-point multiplexed microfluidic chemotaxis assays.
Collapse
Affiliation(s)
- Sampath Satti
- School of Biomedical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada
| | - Pan Deng
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada
| | - Kerryn Matthews
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada
| | - Simon P Duffy
- Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada and British Columbia Institute of Technology, Canada
| | - Hongshen Ma
- School of Biomedical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada and Department of Mechanical Engineering, University of British Columbia, Canada and Department of Urologic Sciences, University of British Columbia, Canada
| |
Collapse
|
11
|
Abstract
Neutrophil chemotaxis plays a vital role in human immune system. Compared with traditional cell migration assays, the emergence of microfluidics provides a new research platform of cell chemotaxis study due to the advantages of visualization, precise control of chemical gradient, and small consumption of reagents. A series of microfluidic devices have been fabricated to study the behavior of neutrophils exposed on controlled, stable, and complex profiles of chemical concentration gradients. In addition, microfluidic technology offers a promising way to integrate the other functions, such as cell culture, separation and analysis into a single chip. Therefore, an overview of recent developments in microfluidic-based neutrophil chemotaxis studies is presented. Meanwhile, the strength and drawbacks of these devices are compared.
Collapse
|
12
|
Boribong BP, Lenzi MJ, Li L, Jones CN. Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making. Front Immunol 2019; 10:359. [PMID: 30915068 PMCID: PMC6422936 DOI: 10.3389/fimmu.2019.00359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/30/2022] Open
Abstract
Neutrophils are the first responders to infection and play a pivotal role in many inflammatory diseases, including sepsis. Recent studies have shown that lipopolysaccharide (LPS), a classical pattern recognition molecule, dynamically programs innate immune responses. In this study, we show that pre-treatment with super-low levels of LPS [1 ng/mL] significantly dysregulate neutrophil migratory phenotypes, including spontaneous migration and altering neutrophil decision-making. To quantify neutrophil migratory decision-making with single-cell resolution, we developed a novel microfluidic competitive chemotaxis-chip (μC3) that exposes cells in a central channel to competing chemoattractant gradients. In this reductionist approach, we use two chemoattractants: a pro-resolution (N-Formyl-Met-Leu-Phe, fMLP) and pro-inflammatory (Leukotriene B4, LTB4) chemoattractant to model how a neutrophil makes a decision to move toward an end target chemoattractant (e.g., bacterial infection) vs. an intermediary chemoattractant (e.g., inflammatory signal). We demonstrate that naïve neutrophils migrate toward the primary end target signal in higher percentages than toward the secondary intermediary signal. As expected, we found that training with high dose LPS [100 ng/mL] influences a higher percentage of neutrophils to migrate toward the end target signal, while reducing the percentage of neutrophils that migrate toward the intermediary signal. Surprisingly, super-low dose LPS [1 ng/mL] significantly changes the ratios of migrating cells and an increased percentage of cells migrate toward the intermediary signal. Significantly, there was also an increase in the numbers of spontaneously migrating neutrophils after treatment with super-low dose LPS. These results shed light onto the directional migratory decision-making of neutrophils exposed to inflammatory training signals. Understanding these mechanisms may lead to the development of pro-resolution therapies that correct the neutrophil compass and reduce off-target organ damage.
Collapse
Affiliation(s)
- Brittany P Boribong
- Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark J Lenzi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline N Jones
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
13
|
Qasaimeh MA, Pyzik M, Astolfi M, Vidal SM, Juncker D. Neutrophil Chemotaxis in Moving Gradients. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mohammad A. Qasaimeh
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Division of Engineering; New York University Abu Dhabi; Abu Dhabi 129188 UAE
- Department of Mechanical and Aerospace Engineering; New York University; NY 11201 USA
| | - Michal Pyzik
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
- Division of Gastroenterology; Department of Medicine; Brigham &Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Mélina Astolfi
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
| | - Silvia M. Vidal
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
| | - David Juncker
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Genome Quebec Innovation Centre; McGill University; Montréal QC H3A 0G1 Canada
- Department of Neurology and Neurosurgery; McGill University; Montréal QC H3A 1A4 Canada
| |
Collapse
|