1
|
Hadpech S, Peerapen P, Thongboonkerd V. The upregulation of lamin A/C as a compensatory mechanism during tight junction disruption in renal tubular cells mediated by calcium oxalate crystals. Curr Res Toxicol 2023; 6:100145. [PMID: 38193033 PMCID: PMC10772403 DOI: 10.1016/j.crtox.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Calcium oxalate monohydrate (COM), the most important crystal causing kidney stone disease, upregulates lamin A/C but downregulates zonula occludens-1 (ZO-1) in renal tubular cells. While roles for F-actin and α-tubulin and their association with ZO-1 are known to regulate COM-mediated tight junction (TJ) disruption, roles of lamin A/C and its interplay with ZO-1 in COM kidney stone model remain unclear and are thus the objectives of this study. Lamin A/C was knocked down in MDCK cells by silencing RNA specific for LMNA (siLMNA). Both wild-type (WT) and siLMNA cells were treated with COM for 48-h compared with the untreated (control) cells. Western blotting and immunofluorescence staining revealed upregulated lamin A/C and downregulated ZO-1 in the COM-treated WT cells. siLMNA successfully reduced lamin A/C expression in both control and COM-treated cells. Nonetheless, siLMNA did not reverse the effect of COM on the decreases in ZO-1 and transepithelial resistance, but further reduced their levels in both control and COM-treated cells. Protein-protein interaction analysis demonstrated that two cytoskeletal proteins (actin and tubulin) served as the linkers to connect lamin A/C with ZO-1 and occludin (both of which are the TJ proteins). Altogether, these data implicate that lamin A/C and ZO-1 are indirectly associated to control TJ function, and ZO-1 expression is regulated by lamin A/C. Moreover, COM-induced upregulation of lamin A/C most likely serves as a compensatory mechanism to cope with the downregulation of ZO-1 during COM-mediated TJ disruption.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
2
|
Lachaize V, Peña B, Ciubotaru C, Cojoc D, Chen SN, Taylor MRG, Mestroni L, Sbaizero O. Compromised Biomechanical Properties, Cell-Cell Adhesion and Nanotubes Communication in Cardiac Fibroblasts Carrying the Lamin A/C D192G Mutation. Int J Mol Sci 2021; 22:9193. [PMID: 34502098 PMCID: PMC8431729 DOI: 10.3390/ijms22179193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical effects induced by arrhythmogenic cardiomyopathy (ACM) originate from a large spectrum of genetic variations, including the missense mutation of the lamin A/C gene (LMNA), LMNA D192G. The aim of our study was to investigate the biophysical and biomechanical impact of the LMNA D192G mutation on neonatal rat ventricular fibroblasts (NRVF). The main findings in mutated NRVFs were: (i) cytoskeleton disorganization (actin and intermediate filaments); (ii) decreased elasticity of NRVFs; (iii) altered cell-cell adhesion properties, that highlighted a strong effect on cellular communication, in particular on tunneling nanotubes (TNTs). In mutant-expressing fibroblasts, these nanotubes were weakened with altered mechanical properties as shown by atomic force microscopy (AFM) and optical tweezers. These outcomes complement prior investigations on LMNA mutant cardiomyocytes and suggest that the LMNA D192G mutation impacts the biomechanical properties of both cardiomyocytes and cardiac fibroblasts. These observations could explain how this mutation influences cardiac biomechanical pathology and the severity of ACM in LMNA-cardiomyopathy.
Collapse
Affiliation(s)
- Veronique Lachaize
- Department of Engineering and Architecture, University of Trieste, Via Valerio 10, 34127 Trieste, Italy;
| | - Brisa Peña
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA; (B.P.); (S.N.C.); (M.R.G.T.); (L.M.)
- Consortium for Fibrosis Research & Translation, Anschutz Medical Campus, University of Colorado, 12700 E. 19th Ave., Aurora, CO 80045, USA
- Bioengineering Department, University of Colorado Denver Anschutz Medical Campus, Bioscience 2 1270 E. Montview Ave., Suite 100, Aurora, CO 80045, USA
| | - Catalin Ciubotaru
- Institute of Materials, National Research Council of Italy (CNR_IOM), Area Science Park Basovizza, 34149 Trieste, Italy; (C.C.); (D.C.)
| | - Dan Cojoc
- Institute of Materials, National Research Council of Italy (CNR_IOM), Area Science Park Basovizza, 34149 Trieste, Italy; (C.C.); (D.C.)
| | - Suet Nee Chen
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA; (B.P.); (S.N.C.); (M.R.G.T.); (L.M.)
| | - Matthew R. G. Taylor
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA; (B.P.); (S.N.C.); (M.R.G.T.); (L.M.)
| | - Luisa Mestroni
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA; (B.P.); (S.N.C.); (M.R.G.T.); (L.M.)
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, Via Valerio 10, 34127 Trieste, Italy;
- CU-Cardiovascular Institute, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., Aurora, CO 80045, USA; (B.P.); (S.N.C.); (M.R.G.T.); (L.M.)
| |
Collapse
|
3
|
Automated Nuclear Lamina Network Recognition and Quantitative Analysis in Structured Illumination Super-Resolution Microscope Images Using a Gaussian Mixture Model and Morphological Processing. PHOTONICS 2020. [DOI: 10.3390/photonics7040119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studying the architecture of nuclear lamina networks is significantly important in biomedicine owing not only to their influence on the genome, but also because they are associated with several diseases. To save labor and time, an automated method for nuclear lamina network recognition and quantitative analysis is proposed for use with lattice structured illumination super-resolution microscope images in this study. This method is based on a Gaussian mixture model and morphological processing. It includes steps for target region generation, bias field correction, image segmentation, network connection, meshwork generation, and meshwork analysis. The effectiveness of the proposed method was confirmed by recognizing and quantitatively analyzing nuclear lamina networks in five images that are presented to show the method’s performance. The experimental results show that our algorithm achieved high accuracy in nuclear lamina network recognition and quantitative analysis, and the median face areas size of lamina networks from U2OS osteosarcoma cells are 0.3184 μm2.
Collapse
|
4
|
Wiggan O, DeLuca JG, Stasevich TJ, Bamburg JR. Lamin A/C deficiency enables increased myosin-II bipolar filament ensembles that promote divergent actomyosin network anomalies through self-organization. Mol Biol Cell 2020; 31:2363-2378. [PMID: 32816614 PMCID: PMC7851964 DOI: 10.1091/mbc.e20-01-0017-t] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nuclear envelope proteins influence cell cytoarchitecure by poorly understood mechanisms. Here we show that small interfering RNA-mediated silencing of lamin A/C (LMNA) promotes contrasting stress fiber assembly and disassembly in individual cells and within cell populations. We show that LMNA-deficient cells have elevated myosin-II bipolar filament accumulations, irregular formation of actin comet tails and podosome-like adhesions, increased steady state nuclear localization of the mechanosensitive transcription factors MKL1 and YAP, and induced expression of some MKL1/serum response factor-regulated genes such as that encoding myosin-IIA (MYH9). Our studies utilizing live cell imaging and pharmacological inhibition of myosin-II support a mechanism of deregulated myosin-II self-organizing activity at the nexus of divergent actin cytoskeletal aberrations resulting from LMNA loss. In light of our results, we propose a model of how the nucleus, via linkage to the cytoplasmic actomyosin network, may act to control myosin-II contractile behavior through both mechanical and transcriptional feedback mechanisms.
Collapse
Affiliation(s)
- O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523.,World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
5
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
6
|
van Loosdregt IAEW, Weissenberger G, van Maris MPFHL, Oomens CWJ, Loerakker S, Stassen OMJA, Bouten CVC. The Mechanical Contribution of Vimentin to Cellular Stress Generation. J Biomech Eng 2019; 140:2673011. [PMID: 29450503 DOI: 10.1115/1.4039308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Contractile stress generation by adherent cells is largely determined by the interplay of forces within their cytoskeleton. It is known that actin stress fibers, connected to focal adhesions, provide contractile stress generation, while microtubules and intermediate filaments provide cells compressive stiffness. Recent studies have shown the importance of the interplay between the stress fibers and the intermediate filament vimentin. Therefore, the effect of the interplay between the stress fibers and vimentin on stress generation was quantified in this study. We hypothesized that net stress generation comprises the stress fiber contraction combined with the vimentin resistance. We expected an increased net stress in vimentin knockout (VimKO) mouse embryonic fibroblasts (MEFs) compared to their wild-type (vimentin wild-type (VimWT)) counterparts, due to the decreased resistance against stress fiber contractility. To test this, the net stress generation by VimKO and VimWT MEFs was determined using the thin film method combined with sample-specific finite element modeling. Additionally, focal adhesion and stress fiber organization were examined via immunofluorescent staining. Net stress generation of VimKO MEFs was three-fold higher compared to VimWT MEFs. No differences in focal adhesion size or stress fiber organization and orientation were found between the two cell types. This suggests that the increased net stress generation in VimKO MEFs was caused by the absence of the resistance that vimentin provides against stress fiber contraction. Taken together, these data suggest that vimentin resists the stress fiber contractility, as hypothesized, thus indicating the importance of vimentin in regulating cellular stress generation by adherent cells.
Collapse
Affiliation(s)
- Inge A E W van Loosdregt
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands e-mail:
| | - Giulia Weissenberger
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven MB 5600, The Netherlands e-mail:
| | - Marc P F H L van Maris
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands e-mail:
| | - Cees W J Oomens
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands e-mail:
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands e-mail:
| | - Oscar M J A Stassen
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands e-mail:
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands e-mail:
| |
Collapse
|
7
|
Alisafaei F, Jokhun DS, Shivashankar GV, Shenoy VB. Regulation of nuclear architecture, mechanics, and nucleocytoplasmic shuttling of epigenetic factors by cell geometric constraints. Proc Natl Acad Sci U S A 2019; 116:13200-13209. [PMID: 31209017 PMCID: PMC6613080 DOI: 10.1073/pnas.1902035116] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cells sense mechanical signals from their microenvironment and transduce them to the nucleus to regulate gene expression programs. To elucidate the physical mechanisms involved in this regulation, we developed an active 3D chemomechanical model to describe the three-way feedback between the adhesions, the cytoskeleton, and the nucleus. The model shows local tensile stresses generated at the interface of the cell and the extracellular matrix regulate the properties of the nucleus, including nuclear morphology, levels of lamin A,C, and histone deacetylation, as these tensile stresses 1) are transmitted to the nucleus through cytoskeletal physical links and 2) trigger an actomyosin-dependent shuttling of epigenetic factors. We then show how cell geometric constraints affect the local tensile stresses and subsequently the three-way feedback and induce cytoskeleton-mediated alterations in the properties of the nucleus such as nuclear lamina softening, chromatin stiffening, nuclear lamina invaginations, increase in nuclear height, and shrinkage of nuclear volume. We predict a phase diagram that describes how the disruption of cytoskeletal components impacts the feedback and subsequently induce contractility-dependent alterations in the properties of the nucleus. Our simulations show that these changes in contractility levels can be also used as predictors of nucleocytoplasmic shuttling of transcription factors and the level of chromatin condensation. The predictions are experimentally validated by studying the properties of nuclei of fibroblasts on micropatterned substrates with different shapes and areas.
Collapse
Affiliation(s)
- Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - G V Shivashankar
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
- Department of Biological Sciences, National University of Singapore, 117411, Singapore
- FIRC Institute for Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Graham DM, Andersen T, Sharek L, Uzer G, Rothenberg K, Hoffman BD, Rubin J, Balland M, Bear JE, Burridge K. Enucleated cells reveal differential roles of the nucleus in cell migration, polarity, and mechanotransduction. J Cell Biol 2018; 217:895-914. [PMID: 29351995 PMCID: PMC5839789 DOI: 10.1083/jcb.201706097] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/16/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Abstract
The nucleus has long been postulated to play a critical physical role during cell polarization and migration, but that role has not been defined or rigorously tested. Here, we enucleated cells to test the physical necessity of the nucleus during cell polarization and directed migration. Using enucleated mammalian cells (cytoplasts), we found that polarity establishment and cell migration in one dimension (1D) and two dimensions (2D) occur without the nucleus. Cytoplasts directionally migrate toward soluble (chemotaxis) and surface-bound (haptotaxis) extracellular cues and migrate collectively in scratch-wound assays. Consistent with previous studies, migration in 3D environments was dependent on the nucleus. In part, this likely reflects the decreased force exerted by cytoplasts on mechanically compliant substrates. This response is mimicked both in cells with nucleocytoskeletal defects and upon inhibition of actomyosin-based contractility. Together, our observations reveal that the nucleus is dispensable for polarization and migration in 1D and 2D but critical for proper cell mechanical responses.
Collapse
Affiliation(s)
- David M Graham
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tomas Andersen
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, Grenoble, France
| | - Lisa Sharek
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Gunes Uzer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID
| | | | | | - Janet Rubin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes, Grenoble, France
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|