1
|
Szewczyk A, Baczyńska D, Choromańska A, Łapińska Z, Chwiłkowska A, Saczko J, Kulbacka J. Advancing cancer therapy: Mechanisms, efficacy, and limitations of calcium electroporation. Biochim Biophys Acta Rev Cancer 2025; 1880:189319. [PMID: 40222421 DOI: 10.1016/j.bbcan.2025.189319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Calcium electroporation, an innovative technique, uses high-voltage pulses to introduce calcium ions into cells, leading to cell death and tumor growth inhibition. This review explores the potential of calcium electroporation as a promising therapeutic approach in cancer treatment. We provide an in-depth analysis of the underlying mechanisms by which calcium ions function within cells and how their introduction through electroporation can effectively induce cell death in cancer cells. Furthermore, we present a comprehensive overview of the current literature, covering both preclinical and clinical studies, to highlight the safety and efficacy of calcium electroporation in various cancer types, including melanoma, head and neck cancer, and breast cancer. We also discuss the distinct advantages of calcium electroporation over traditional cancer therapies, such as its specific targeting of cancer cells while sparing healthy cells. However, we also address the challenges and limitations associated with this technique, underscoring the need for further research. By providing a comprehensive examination of calcium electroporation, this review aims to contribute to understanding this emerging field and encourage further investigation into its potential as a novel cancer treatment strategy.
Collapse
Affiliation(s)
- Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania.
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
de Caro A, Leroy JB, Royant L, Sayag D, Marano I, Lallemand E, Toussaint M, Kolosnjaj-Tabi J, Rols MP, Golzio M. New effective and less painful high frequency electrochemotherapy protocols: From optimization on 3D models to pilot study on veterinary patients. J Control Release 2025; 381:113592. [PMID: 40037431 DOI: 10.1016/j.jconrel.2025.113592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Electroporation, a physical method that permeabilizes cell membranes, is increasingly used in cancer treatment. By enhancing the uptake of hydrophilic antitumor drugs, it boosts their cytotoxic effects and has proven effective in both human and veterinary medicine through electrochemotherapy. However, this treatment requires loco-regional or even general anesthesia, as electrical pulses cause muscle contractions and pain. Several clinical studies have demonstrated that application of high frequency pulses (above 5000 Hz) and short pulse duration (under 11 μs) causes much less discomfort to patients. In order to reduce the pain associated with contractions while maintaining the effectiveness of the treatment, we have developed new protocols using a high-frequency generator that delivers electric field pulses at a pulse repetition rate up to 2 MHz, associated to a multipolar electrode. In vitro tests on colorectal cancer cells were performed to assess the efficiency of cisplatin and bleomycin in inducing cell death. The efficiency obtained after one single treatment on both cell suspensions and on 3D multicellular spheroid models were similar to the ones obtained using ESOPE (European standard operating procedures for electrochemotherapy) protocol, which is currently used in clinics. In addition, as tumor cells die in an immunogenic cell death (ICD) mode and can release danger associated molecular patterns (DAMPs), major hallmarks of ICD were evaluated following the treatment by quantifying the apoptotic cell death, caspases 3/7 activation and key DAMPs. Subsequently, pilot studies on small number of conscious cats and horses under mild sedation confirmed that these protocols did not cause any noticeable muscle contractions and resulted in either partial or complete responses. New high-frequency electroporation protocols, described herein, show great promise in shifting electrochemotherapy into an effective and painless cancer treatment.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | | | | | - David Sayag
- ONCOnseil - Unité D'expertise en Oncologie Vétérinaire, Toulouse, France
| | - Ilaria Marano
- Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | | | - Marion Toussaint
- Ecole Nationale Vétérinaire de Toulouse (ENVT), Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
3
|
Jacobs EJ, Rubinsky B, Davalos RV. Pulsed field ablation in medicine: irreversible electroporation and electropermeabilization theory and applications. Radiol Oncol 2025; 59:1-22. [PMID: 40014783 PMCID: PMC11867574 DOI: 10.2478/raon-2025-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Focal ablation techniques are integral in the surgical intervention of diseased tissue, where it is necessary to minimize damage to the surrounding parenchyma and critical structures. Irreversible electroporation (IRE) and high-frequency IRE (H-FIRE), colloquially called pulsed-field ablation (PFA), utilize high-amplitude, low-energy pulsed electric fields (PEFs) to nonthermally ablate soft tissue. PEFs induce cell death through permeabilization of the cellular membrane, leading to loss of homeostasis. The unique nonthermal nature of PFA allows for selective cell death while minimally affecting surrounding proteinaceous structures, permitting treatment near sensitive anatomy where thermal ablation or surgical resection is contraindicated. Further, PFA is being used to treat tissue when tumor margins are not expected after surgical resection, termed margin accentuation. This review explores both the theoretical foundations of PFA, detailing how PEFs induce cell membrane destabilization and selective tissue ablation, the outcomes following treatment, and its clinical implications across oncology and cardiology. CONCLUSIONS Clinical experience is still progressing, but reports have demonstrated that PFA reduces complications often seen with thermal ablation techniques. Mounting oncology data also support that PFA produces a robust immune response that may prevent local recurrences and attenuate metastatic disease. Despite promising outcomes, challenges such as optimizing field delivery and addressing variations in tissue response require further investigation. Future directions include refining PFA protocols and expanding its application to other therapeutic areas like benign tissue hyperplasia and chronic bronchitis.
Collapse
Affiliation(s)
- Edward J Jacobs
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| | - Boris Rubinsky
- Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Rafael V Davalos
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| |
Collapse
|
4
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Rembiałkowska N, Szlasa W, Radzevičiūtė-Valčiukė E, Kulbacka J, Novickij V. Negative effects of cancellation during nanosecond range High-Frequency calcium based electrochemotherapy in vitro. Int J Pharm 2023; 648:123611. [PMID: 37977287 DOI: 10.1016/j.ijpharm.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Drug delivery using nanosecond pulsed electric fields is a new branch of electroporation-based treatments, which potentially can substitute European standard operating procedures for electrochemotherapy. In this work, for the first time, we characterize the effects of ultra-fast repetition frequency (1-2.5 MHz) nanosecond pulses (5-9 kV/cm, 200 and 400 ns) in the context of nano-electrochemotherapy with calcium. Additionally, we investigate the feasibility of bipolar symmetric (↑200 ns + ↓200 ns) and asymmetric (↑200 ns + ↓400 ns) nanosecond protocols for calcium delivery. The effects of bipolar cancellation and the influence of interphase delay (200 ns) are overviewed. Human lung cancer cell lines A549 and H69AR were used as a model. It was shown that unipolar pulses delivered at high frequency are effective for electrochemotherapy with a significant improvement in efficiency when the delay between separate pulses is reduced. Bipolar symmetric pulses trigger the cancellation phenomenon limiting applications for drug delivery and can be compensated by the asymmetry of the pulse (↑200 ns + ↓400 ns or ↑400 ns + ↓200 ns). The results of this study can be successfully used to derive a new generation of nsPEF protocols for successful electrochemotherapy treatments.
Collapse
Affiliation(s)
- Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eivina Radzevičiūtė-Valčiukė
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania; State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania.
| |
Collapse
|
6
|
Łapińska Z, Novickij V, Rembiałkowska N, Szewczyk A, Dubińska-Magiera M, Kulbacka J, Saczko J. The influence of asymmetrical bipolar pulses and interphase intervals on the bipolar cancellation phenomenon in the ovarian cancer cell line. Bioelectrochemistry 2023; 153:108483. [PMID: 37301162 DOI: 10.1016/j.bioelechem.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The application of negative polarity electrical pulse (↓) following positive polarity pulses (↑) may induce bipolar cancellation (BPC), a unique physiological response believed to be specific to nanosecond electroporation (nsEP). The literature lacks analysis of bipolar electroporation (BP EP) involving asymmetrical sequences composed of nanosecond and microsecond pulses. Moreover, the impact of interphase interval on BPC caused by such asymmetrical pulse needs consideration. In this study, the authors utilized the ovarian clear carcinoma cell line (OvBH-1) model to investigate the BPC with asymmetrical sequences. Cells were exposed to pulses delivered in 10-pulse bursts but as uni- or bipolar, symmetrical, or asymmetrical sequences with a duration of 600 ns or 10 µs and electric field strength equal to 7.0 or 1.8 kV/cm, respectively. It was shown that the asymmetry of pulses influences BPC. The obtained results have also been investigated in the context of calcium electrochemotherapy. The reduction of cell membrane poration, and cell survival have been observed following Ca2+ electrochemotherapy. The effects of interphase delays (1 and 10 µs) on the BPC phenomenon were reported. Our findings show that the BPC phenomenon can be controlled using pulse asymmetry or delay between the positive and negative polarity of the pulse.
Collapse
Affiliation(s)
- Zofia Łapińska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, LT-03227 Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Magdalena Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Science, University of Wroclaw, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410 Vilnius, Lithuania.
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Electroporation and Electrochemotherapy in Gynecological and Breast Cancer Treatment. Molecules 2022; 27:molecules27082476. [PMID: 35458673 PMCID: PMC9026735 DOI: 10.3390/molecules27082476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022] Open
Abstract
Gynecological carcinomas affect an increasing number of women and are associated with poor prognosis. The gold standard treatment plan is mainly based on surgical resection and subsequent chemotherapy with cisplatin, 5-fluorouracil, anthracyclines, or taxanes. Unfortunately, this treatment is becoming less effective and is associated with many side effects that negatively affect patients’ physical and mental well-being. Electroporation based on tumor exposure to electric pulses enables reduction in cytotoxic drugs dose while increasing their effectiveness. EP-based treatment methods have received more and more interest in recent years and are the subject of a large number of scientific studies. Some of them show promising therapeutic potential without using any cytotoxic drugs or molecules already present in the human body (e.g., calcium electroporation). This literature review aims to present the fundamental mechanisms responsible for the course of EP-based therapies and the current state of knowledge in the field of their application in the treatment of gynecological neoplasms.
Collapse
|
8
|
Murphy KR, Aycock KN, Hay AN, Rossmeisl JH, Davalos RV, Dervisis NG. High-frequency irreversible electroporation brain tumor ablation: exploring the dynamics of cell death and recovery. Bioelectrochemistry 2022; 144:108001. [PMID: 34844040 PMCID: PMC8792323 DOI: 10.1016/j.bioelechem.2021.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022]
Abstract
Improved therapeutics for malignant brain tumors are urgently needed. High-frequency irreversible electroporation (H-FIRE) is a minimally invasive, nonthermal tissue ablation technique, which utilizes high-frequency, bipolar electric pulses to precisely kill tumor cells. The mechanisms of H-FIRE-induced tumor cell death and potential for cellular recovery are incompletely characterized. We hypothesized that tumor cells treated with specific H-FIRE electric field doses can survive and retain proliferative capacity. F98 glioma and LL/2 Lewis lung carcinoma cell suspensions were treated with H-FIRE to model primary and metastatic brain cancer, respectively. Cell membrane permeability, apoptosis, metabolic viability, and proliferative capacity were temporally measured using exclusion dyes, condensed chromatin staining, WST-8 fluorescence, and clonogenic assays, respectively. Both tumor cell lines exhibited dose-dependent permeabilization, with 1,500 V/cm permitting and 3,000 V/cm inhibiting membrane recovery 24 h post-treatment. Cells treated with 1,500 V/cm demonstrated significant and progressive recovery of apoptosis and metabolic activity, in contrast to cells treated with higher H-FIRE doses. Cancer cells treated with recovery-permitting doses of H-FIRE maintained while those treated with recovery-inhibiting doses lost proliferative capacity. Taken together, our data suggest that H-FIRE induces reversible and irreversible cellular damage in a dose-dependent manner, and the presence of dose-dependent recovery mechanisms permits tumor cell proliferation.
Collapse
Affiliation(s)
- Kelsey R Murphy
- Department of Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| | - Alayna N Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, United States.
| | - Nikolaos G Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States.
| |
Collapse
|
9
|
Aycock KN, Vadlamani RA, Jacobs EJ, Imran KM, Verbridge S, Allen IC, Manuchehrabadi N, Davalos RV. Experimental and Numerical Investigation of Parameters Affecting High-frequency Irreversible Electroporation for Prostate Cancer Ablation. J Biomech Eng 2022; 144:1131491. [PMID: 35044426 DOI: 10.1115/1.4053595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/09/2022]
Abstract
While the primary goal of focal therapy for prostate cancer (PCa) is conserving patient quality of life by reducing oncological burden, available modalities use thermal energy or whole-gland radiation which can damage critical neurovascular structures within the prostate and increase risk of genitourinary dysfunction. High-frequency irreversible electroporation (H-FIRE) is a promising alternative ablation modality that utilizes bursts of pulsed electric fields (PEFs) to destroy aberrant cells via targeted membrane damage. Due to its non-thermal mechanism, H-FIRE offers several advantages over state-of-the-art treatments, but waveforms have not been optimized for treatment of PCa. In this study, we characterize lethal electric field thresholds (EFTs) for H-FIRE waveforms with three different pulse widths as well as three interpulse delays in vitro and compare them to conventional IRE. Experiments were performed in non-neoplastic and malignant prostate cells to determine the effect of waveforms on both targeted (malignant) and adjacent (non-neoplastic) tissue. A numerical modeling approach was developed to estimate the clinical effects of each waveform including extent of non-thermal ablation, undesired thermal damage, and nerve excitation. Our findings indicate that H-FIRE waveforms with pulse durations of 5 and 10 µs provide large ablations comparable to IRE with tolerable levels of thermal damage and minimized muscle contractions. Lower duration (2 µs) H-FIRE waveforms exhibit the least amount of muscle contractions but require increased voltages which may be accompanied by unwanted thermal damage.
Collapse
Affiliation(s)
- Kenneth N Aycock
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Ram Anand Vadlamani
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Edward J Jacobs
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Khan Mohammad Imran
- Virginia-Maryland College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, 205 Duck Pond Dr, Blacksburg, VA 24061
| | - Scott Verbridge
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| | - Irving C Allen
- Virginia-Maryland College of Veterinary Medicine, Department of Biomedical Sciences and Pathobiology, 205 Duck Pond Dr, Blacksburg, VA 24061
| | | | - Rafael V Davalos
- Virginia Tech, Department of Biomedical Engineering and Mechanics, 325 Stanger St, Blacksburg, VA 24061
| |
Collapse
|
10
|
Liu H, Zhao Y, Yao C, Schmelz EM, Davalos RV. Differential effects of nanosecond pulsed electric fields on cells representing progressive ovarian cancer. Bioelectrochemistry 2021; 142:107942. [PMID: 34509872 DOI: 10.1016/j.bioelechem.2021.107942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
Nanosecond pulsed electric fields (nsPEFs) may induce differential effects on tumor cells from different disease stages and could be suitable for treating tumors by preferentially targeting the late-stage/highly aggressive tumor cells. In this study, we investigated the nsPEF responses of mouse ovarian surface epithelial (MOSE) cells representing progressive ovarian cancer from benign to malignant stages and highly aggressive tumor-initiating-like cells. We established the cell-seeded 3D collagen scaffolds cultured with or without Nocodazole (eliminating the influence of cell proliferation on ablation outcome) to observe the ablation effects at 3 h and 24 h after treatment and compared the corresponding thresholds obtained by numerically calculated electric field distribution. The results showed that nsPEFs induced larger ablation areas with lower thresholds as the cell progress from benign, malignant to a highly aggressive phenotype. This differential effect was not affected by the different doubling times of the cells, as apparent by similar ablation induction after a synergistic treatment of nsPEFs and Nocodazole. The result suggests that nsPEFs could induce preferential ablation effects on highly aggressive and malignant ovarian cancer cells than their benign counterparts. This study provides an experimental basis for the research on killing malignant tumor cells via electrical treatments and may have clinical implications for treating tumors and preventing tumor recurrence after treatment.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yajun Zhao
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; College of Electrical Engineering and Control Science, Nanjing Tech. University, Nanjing 211816, China
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China.
| | - Eva M Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
11
|
Microsecond Pulsed Electric Fields: An Effective Way to Selectively Target and Radiosensitize Medulloblastoma Cancer Stem Cells. Int J Radiat Oncol Biol Phys 2021; 109:1495-1507. [PMID: 33509660 DOI: 10.1016/j.ijrobp.2020.11.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Cancer stem cells constitute an endless reserve for the maintenance and progression of tumors, and they could be the reason for conventional therapy failure. New therapeutic strategies are necessary to specifically target them. In this context, microsecond pulsed electric fields have been selected to expose D283Med cells, a human medulloblastoma cell line resulted to be rich in cancer stem cells, and normal human astrocytes. METHODS We analyzed in vitro different endpoints at different times after microsecond pulsed electric field exposure, such as permeabilization, reactive oxygen species generation, cell viability/proliferation, cell cycle, and clonogenicity, as well as the expression of different genes involved in cell cycle, apoptosis, and senescence. Furthermore, the response of D283Med cells exposed to microsecond pulsed electric fields was validated in vivo in a heterotopic mouse xenograft model. RESULTS Our in vitro results showed that a specific pulse protocol (ie, 0.3 MV/m, 40 μs, 5 pulses) was able to induce irreversible membrane permeabilization and apoptosis exclusively in medulloblastoma cancer stem cells. In the surviving cells, reactive oxygen species generation was observed, together with a transitory G2/M cell-cycle arrest with a senescence-associated phenotype via the upregulation of GADD45A. In vivo results, after pulsed electric field exposure, demonstrated a significant tumor volume reduction with no eradication of tumor mass. In conjunction, we verified the efficacy of electric pulse pre-exposure followed by ionizing irradiation in vivo to enable complete inhibition of tumor growth. CONCLUSIONS Our data reveal novel therapeutic options for the targeting of medulloblastoma cancer stem cells, indicating nonionizing pulsed electric field pre-exposure as an effective means to overcome the radioresistance of cancer stem cells.
Collapse
|
12
|
Liu H, Yao C, Zhao Y, Chen X, Dong S, Wang L, Davalos RV. In Vitro Experimental and Numerical Studies on the Preferential Ablation of Chemo-Resistant Tumor Cells Induced by High-Voltage Nanosecond Pulsed Electric Fields. IEEE Trans Biomed Eng 2020; 68:2400-2411. [PMID: 33232222 DOI: 10.1109/tbme.2020.3040337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemoresistance causes tumor recurrence and metastasis, resulting in poor clinical outcomes and low survival, and has been considered an obstacle to tumor therapy. The development of novel therapeutic approaches that can effectively kill chemoresistant tumor cells (CRTCs) is therefore critical to overcoming these obstacles. OBJECTIVE Here, we introduce an emerging physical feature-based therapeutic approach based on nanosecond pulsed electric fields (nsPEFs). The goal of this study is to investigate the effect of nsPEFs on CRTCs. METHODS The cell viability, ablation effects on a 3D-cultured scaffold, and lethal thresholds of nsPEFs were evaluated according to fluorescence staining assays. RESULTS nsPEF treatment preferentially affected chemoresistant cells (A549/CDDP) with a higher cell viability inhibition ability/cell death rate, larger ablation area, and lower ablation threshold compared to their respective homologous tumor cells (A549). The experimental and theoretical studies suggested that nsPEFs displayed selective behavior toward intracellular structures. With this selective character, nsPEFs can induce higher electroporation effects (e.g., higher pore number, larger electroporation area, and faster fluorescence dissipation on the nuclear envelope) on CRTCs due to their larger nuclear size and cell membrane capacitance. CONCLUSION These findings demonstrated that nsPEFs induced preferential ablation of CRTCs over their respective homologous tumor cells. SIGNIFICANCE This study provides an experimental and theoretical basis for the study of killing CRTCs by electrical treatments and suggests potential applications in the optimization of novel anti-chemoresistance methods.
Collapse
|
13
|
Fesmire CC, Petrella RA, Kaufman JD, Topasna N, Sano MB. Irreversible electroporation is a thermally mediated ablation modality for pulses on the order of one microsecond. Bioelectrochemistry 2020; 135:107544. [DOI: 10.1016/j.bioelechem.2020.107544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022]
|
14
|
Brock RM, Beitel-White N, Davalos RV, Allen IC. Starting a Fire Without Flame: The Induction of Cell Death and Inflammation in Electroporation-Based Tumor Ablation Strategies. Front Oncol 2020; 10:1235. [PMID: 32850371 PMCID: PMC7399335 DOI: 10.3389/fonc.2020.01235] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
New therapeutic strategies and paradigms are direly needed for the treatment of cancer. While the surgical removal of tumors is favored in most cancer treatment plans, resection options are often limited based on tumor localization. Over the last two decades, multiple tumor ablation strategies have emerged as promising stand-alone or combination therapeutic options for patients. These strategies are often employed to treat tumors in areas where surgical resection is not possible or where chemotherapeutics have proven ineffective. The type of cell death induced by the ablation modality is a critical aspect of therapeutic success that can impact the efficacy of the treatment and systemic anti-tumor immune system responses. Electroporation-based ablation technologies include electrochemotherapy, irreversible electroporation, and other modalities that rely on pulsed electric fields to create pores in cell membranes. These pores can either be reversible or irreversible depending on the electric field parameters and can induce cell death either alone or in combination with a therapeutic agent. However, there have been many controversial findings among these technologies as to the cell death type initiated, from apoptosis to pyroptosis. As cell death mechanisms can impact treatment side effects and efficacy, we review the main types of cell death induced by electroporation-based treatments and summarize the impact of these mechanisms on treatment response. We also discuss potential reasons behind the variability of findings such as the similarities between cell death pathways, differences between cell-types, and the variation in electric field strength across the treatment area.
Collapse
Affiliation(s)
- Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Natalie Beitel-White
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Irving C. Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Science, Blacksburg, VA, United States
| |
Collapse
|
15
|
Petrella RA, Fesmire CC, Kaufman JD, Topasna N, Sano MB. Algorithmically Controlled Electroporation: A Technique for Closed Loop Temperature Regulated Pulsed Electric Field Cancer Ablation. IEEE Trans Biomed Eng 2020; 67:2176-2186. [PMID: 32673194 DOI: 10.1109/tbme.2019.2956537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To evaluate the effect of a closed-loop temperature based feedback algorithm on ablative outcomes for pulsed electric field treatments. METHODS A 3D tumor model of glioblastoma was used to assess the impact of 2 μs duration bipolar waveforms on viability following exposure to open and closed-loop protocols. Closed-loop treatments evaluated transient temperature increases of 5, 10, 15, or 22 °C above baseline. RESULTS The temperature controlled ablation diameters were conditionally different than the open-loop treatments and closed-loop treatments generally produced smaller ablations. Closed-loop control enabled the investigation of treatments with steady state 42 °C hyperthermic conditions which were not feasible without active feedback. Baseline closed-loop treatments at 20 °C resulted in ablations measuring 9.9 ± 0.3 mm in diameter while 37 °C treatments were 20% larger (p < 0.0001) measuring 11.8 ± 0.3 mm indicating that this protocol induces a thermally mediated biological response. CONCLUSION A closed-loop control algorithm which modulated the delay between successive pulse waveforms to achieve stable target temperatures was demonstrated. Algorithmic control enabled the evaluation of specific treatment parameters at physiological temperatures not possible with open-loop systems due to excessive Joule heating. SIGNIFICANCE Irreversible electroporation is generally considered to be a non-thermal ablation modality and temperature monitoring is not part of the standard clinical practice. The results of this study indicate ablative outcomes due to exposure to pulses on the order of one microsecond may be thermally mediated and dependent on local tissue temperatures. The results of this study set the foundation for experiments in vivo utilizing temperature control algorithms.
Collapse
|
16
|
Liu H, Shi F, Tang X, Zheng S, Kolb J, Yao C. Application of bioimpedance spectroscopy to characterize chemoresistant tumor cell selectivity of nanosecond pulse stimulation. Bioelectrochemistry 2020; 135:107570. [PMID: 32526679 DOI: 10.1016/j.bioelechem.2020.107570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
The discriminating effects of nanosecond pulsed electric fields (nsPEFs) between chemoresistant tumor cells (CRTCs) and their respective homologous chemosensitive tumor cells (CSTCs) were investigated based on bioimpedance spectroscopy (BIS). The electrical properties of individual untreated cells were determined by fitting the impedance spectra to an equivalent circuit model and then using aided simulations to calculate the nuclear envelope transmembrane potential (nTMP) and electroporation area on the nuclear envelope. Additionally, fluorescence staining assays of cell monolayers after nanopulse stimulation (80 pulses, 200 ns, 3 kV) were conducted to validate the simulation results. The staining results indicated that CRTCs showed a larger ablation area and lower lethal threshold compared to CSTCs after exposure to the same nsPEF energy, which was in accordance with the higher nTMP and larger electroporation area calculated for CRTCs. The increase in the lethal effects of nsPEFs on CRTCs compared to CSTCs mainly resulted from the superposition of the changes in the electrical properties and nuclear size. The work shows that BIS can distinguish CRTCs and CSTCs and the corresponding nsPEF effects, suggesting potential applications for the optimization of novel anti-chemoresistance methods, including nsPEF-treatments.
Collapse
Affiliation(s)
- Hongmei Liu
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China
| | - Fukun Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China; Leibniz Institute for Plasma Science and Technology (INP), Greifswald 17489, Germany; Institute of Physics, University of Rostock, Rostock 18059, Germany
| | - Xiao Tang
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China
| | - Shuang Zheng
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China
| | - Juergen Kolb
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald 17489, Germany; Institute of Physics, University of Rostock, Rostock 18059, Germany
| | - Chenguo Yao
- School of Electrical Engineering, Chongqing University, Chongqing 400033, China; State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing 400033, China.
| |
Collapse
|
17
|
Murauskas A, Staigvila G, Girkontaitė I, Zinkevičienė A, Ruzgys P, Šatkauskas S, Novickij J, Novickij V. Predicting electrotransfer in ultra-high frequency sub-microsecond square wave electric fields. Electromagn Biol Med 2019; 39:1-8. [PMID: 31884821 DOI: 10.1080/15368378.2019.1710529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Measurement of cell transmembrane potential (TMP) is a complex methodology involving patch-clamp methods or fluorescence-based potentiometric markers, which have limited to no applicability during ultrafast charging and relaxation phenomena. In such a case, analytical methods are applied for evaluation of the voltage potential changes in biological cells. In this work, the TMP-based electrotransfer mechanism during ultra-high frequency (≥1 MHz) electric fields is studied and the phenomenon of rapid membrane charge accumulation, which is non-occurrent during conventional low-frequency electroporation is simulated using finite element method (FEM). The influence of extracellular medium conductivity (0.1, 1.5 S/m) and pulse rise/fall times (10-50 ns) TMP generation are presented. It is shown that the medium conductivity has a dramatic influence on the electroporation process in the high-frequency range of applied pulsed electric fields (PEF). The applied model allowed to grasp the differences in polarization between 100 and 900 ns PEF and enabled successful prediction of the experimental outcome of propidium iodide electrotransfer into CHO-K1 cells and the conductivity-dependent patterns of MHz range PEF-triggered electroporation were determined. The results of this study form recommendations for development and pre-evaluation of future PEF protocols and generators based on ultra-high frequency electroporation for anticancer and gene therapies.
Collapse
Affiliation(s)
- Arūnas Murauskas
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Ruzgys
- Biophysics Group, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
18
|
Wimberger T, Peham JR, Ehmoser EK, Wassermann KJ. Controllable cell manipulation in a microfluidic pipette-tip design using capacitive coupling of electric fields. LAB ON A CHIP 2019; 19:3997-4006. [PMID: 31667478 DOI: 10.1039/c9lc00927b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Systems designed toward cell manipulation by electric fields are inherently challenged by energy dissipation along the electrode-electrolyte interface. A promising remedy is the introduction of high-k electrode passivation, enabling efficient capacitive coupling of electric fields into biological samples. We present the implementation of this strategy in a reusable pipette tip design featuring a 10 μl chamber volume for life science applications. Prototype validation and comparison to conductive gold-coated electrodes reveal a consistent and controllable biological effect that significantly increases the reproducibility of lysis events. The system provides precise descriptions of HEK-293 lysis dependency to variables such as field strength, frequency, and conductivity. Over 80% of cells were reversibly electroporated with minimal electrical lysis over a broad range of field settings. Successful transfection requires exponential decay pulses and showcases how modulating capacitive coupling can advance our understanding of fundamental mechanics in the field of electroporation.
Collapse
Affiliation(s)
- Terje Wimberger
- Austrian Institute of Technology GmbH, Department for Health & Bioresources, Vienna, Austria. and University of Natural Resources and Life Sciences, Department for Nanobiotechnology, Vienna, Austria
| | - Johannes R Peham
- Austrian Institute of Technology GmbH, Department for Health & Bioresources, Vienna, Austria.
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences, Department for Nanobiotechnology, Vienna, Austria
| | - Klemens J Wassermann
- Austrian Institute of Technology GmbH, Department for Health & Bioresources, Vienna, Austria.
| |
Collapse
|
19
|
Sano MB, DeWitt MR, Teeter SD, Xing L. Optimization of a single insertion electrode array for the creation of clinically relevant ablations using high-frequency irreversible electroporation. Comput Biol Med 2018; 95:107-117. [DOI: 10.1016/j.compbiomed.2018.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
|