1
|
Wei M, Wang X, Qiao Y. Multiphase coacervates: mimicking complex cellular structures through liquid-liquid phase separation. Chem Commun (Camb) 2024; 60:13169-13178. [PMID: 39439431 DOI: 10.1039/d4cc04533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coacervate microdroplets, arising from liquid-liquid phase separation, have emerged as promising models for primary cells, demonstrating the ability to regulate biomolecular enrichment, create chemical gradients, accelerate confined reactions, and even express proteins. Notably, multiphase coacervation provides a robust framework to replicate hierarchically complex cellular structures, offering valuable insights into cellular organization and function. In this review, we explore the recent advancements in the study of multiphase coacervates, focusing on design strategies, underlying mechanisms, structural control, and their applications in biomimetics. These developments highlight the potential of multiphase coacervates as powerful tools in the field of synthetic biology and material science.
Collapse
Affiliation(s)
- Minghao Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaokang Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Jorge AMS, Pereira JFB. Aqueous two-phase systems - versatile and advanced (bio)process engineering tools. Chem Commun (Camb) 2024; 60:12144-12168. [PMID: 39350759 DOI: 10.1039/d4cc02663b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Aqueous two-phase systems (ATPS), also known as Aqueous Biphasic Systems (ABS), have been extensively studied as platforms for the separation and purification of biomolecules and other valuable compounds. These liquid-liquid extraction (LLE) systems have been a tool for biotechnology since its origin (Albertsson, 1950's), recently expanding to exciting fields such as health, biomedicine and material sciences. Due to their biocompatibility, amenability, flexibility, and versatility, ATPS have been applied across various research areas, addressing many challenges associated with conventional methodologies. In this feature article, we first discuss the fundamentals of ATPS and the molecular mechanisms that govern their formation and are crucial for their application. We then explore the most prominent and innovative applications of these systems in downstream processing. Additionally, we provide insights into the design of in situ upstream-downstream integrated platforms, and their use as pre-treatment and analytical tools. The latest advancements in ATPS applications within disruptive bioengineering and biotechnology fields are presented, along with their pioneering use in emerging scientific areas, such as the formation of all-aqueous (water-in-water) emulsions, microfluidic systems, and membrane-free batteries. Overall, this work underscores the transformative potential of ATPS in various branches of science, pinpointing directions for future research to fully explore and maximize ATPS capabilities, overcome existing hurdles, and drive innovation forward.
Collapse
Affiliation(s)
- Alexandre M S Jorge
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - Jorge F B Pereira
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
3
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Jegatheeswaran S, Tan JH, Fraser AG, Hwang DK. Encapsulation of Caenorhabditis elegans in Water-in-Water Microdroplets to Study the Worm Viability: Alternative Avenue to Manipulate Microdroplet Environment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59037-59043. [PMID: 38063021 DOI: 10.1021/acsami.3c14176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Due to the great biocompatibility of the aqueous two phase system (ATPS), biological cells have been widely encapsulated in ATPS microdroplets (diameter < 50 μm). However, the immobilization of relatively large multicellular organisms such as Caenorhabditis elegans in ATPS droplets remains challenging as the spontaneous generation of droplets greater than 200 μm is difficult without external perturbations. In this study, we utilize a microneedle-assisted coflow microfludic channel to passively form ATPS microdroplets larger than 200 μm and successfully entrap C. elegans in the microdroplets. We monitor the worm viability and its temporal stroke frequency up to 6 h. We study the effects of dextran (DEX)-to-polyethylene glycol (PEG) flow ratios and worm concentration on the droplet diameter, worm encapsulation efficiency, and the number of droplets containing individual worms. Larger ATPS microdroplets (>200 μm) form in the ranges of capillary number (Ca) between 0.020 to 0.20 and Weber number (We) between 10-5 and 10-3. An ATPS with the encapsulation ability and biocompatibility can offer an alternative immobilization tool for multicellular organisms to existing platforms such as water/oil droplets.
Collapse
Affiliation(s)
- Sinthuran Jegatheeswaran
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - June H Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Andrew G Fraser
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
6
|
Zhang Q, Xie T, Yi X, Xing G, Feng S, Chen S, Li Y, Lin JM. Microfluidic Aqueous Two-Phase Focusing of Chemical Species for In Situ Subcellular Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45640-45650. [PMID: 37733946 DOI: 10.1021/acsami.3c09665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Confinement of chemical species in a controllable micrometer-level (several to a dozen micrometers) space in an aqueous environment is essential for precisely manipulating chemical events in subcellular regions. However, rapid diffusion and hard-to-control micrometer-level fluids make it a tough challenge. Here, a versatile open microfluidic method based on an aqueous two-phase system (ATPS) is developed to restrict species inside an open space with micron-level width. Unequal standard chemical potentials of the chemical species in two phases and space-time correspondence in the microfluidic system prevent outward diffusion across the phase interface, retaining the target species inside its preferred phase flow and creating a sharp boundary with a dramatic concentration change. Then, the chemical flow (the preferred phase with target chemical species) is precisely manipulated by a microfluidic probe, which can be compressed to a micron-level width and aimed at an arbitrary position of the sample. As a demonstration of the feasibility and versatility of the strategy, chemical flow is successfully applied to subcellular regions of various kinds of living single cells. Subcellular regions are successfully labeled (cytomembrane and mitochondria) and damaged. Healing-regeneration behaviors of living single cells are triggered by subcellular damage and analyzed. The method is relatively general regarding the species of chemicals and biosamples, which could promote deeper cell research.
Collapse
Affiliation(s)
- Qiang Zhang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianze Xie
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xizhen Yi
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Becker M, Gurian M, Schot M, Leijten J. Aqueous Two-Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204609. [PMID: 36585374 PMCID: PMC10015849 DOI: 10.1002/advs.202204609] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Embedded 3D bioprinting has great value for the freeform fabrication of living matter. However, embedded 3D bioprinting is currently limited to highly viscous liquid baths or liquid-like solid baths. In contrast, prior to crosslinking, most hydrogels are formulated as low-viscosity solutions and are therefore not directly compatible with bioprinting due to low shape fidelity and poor print stability. The authors here present a method to enable low-viscosity ink 3D (LoV3D) bioprinting, based on aqueous two-phase stabilization of the ink-bath interface. LoV3D allows for the printing of living constructs at high extrusion speeds (up to 1.8 m s-1 ) with high viability due to its exceedingly low-viscosity. Moreover, LoV3D liquid/liquid interfaces offer unique advantages for fusing printed structures, creating intricate vasculature, and modifying surfaces at higher efficiencies than traditional systems. Furthermore, the low interfacial tension of LoV3D bioprinting offers unprecedented nozzle-independent control over filament diameter via large-dimension strand-thinning, which allows for the printing of an exceptionally wide range of diameters down to the width of a single cell. Overall, LoV3D bioprinting is a unique all-aqueous approach with broad material compatibility without the need for rheological ink adaption, which opens new avenues of application in cell patterning, drug screening, engineered meat, and organ fabrication.
Collapse
Affiliation(s)
- Malin Becker
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Melvin Gurian
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Maik Schot
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Jeroen Leijten
- Leijten LabDept. of Developmental BioEngineeringTechMed CentreUniversity of TwenteEnschede7522 NBThe Netherlands
| |
Collapse
|
8
|
Jeyhani M, Navi M, Chan KWY, Kieda J, Tsai SSH. Water-in-water droplet microfluidics: A design manual. BIOMICROFLUIDICS 2022; 16:061503. [PMID: 36406338 PMCID: PMC9674389 DOI: 10.1063/5.0119316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Droplet microfluidics is utilized in a wide range of applications in biomedicine and biology. Applications include rapid biochemical analysis, materials generation, biochemical assays, and point-of-care medicine. The integration of aqueous two-phase systems (ATPSs) into droplet microfluidic platforms has potential utility in oil-free biological and biomedical applications, namely, reducing cytotoxicity and preserving the native form and function of costly biomolecular reagents. In this review, we present a design manual for the chemist, biologist, and engineer to design experiments in the context of their biological applications using all-in-water droplet microfluidic systems. We describe the studies achievable using these systems and the corresponding fabrication and stabilization methods. With this information, readers may apply the fundamental principles and recent advancements in ATPS droplet microfluidics to their research. Finally, we propose a development roadmap of opportunities to utilize ATPS droplet microfluidics in applications that remain underexplored.
Collapse
|
9
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
10
|
Zhou C, Zhu P, Tian Y, Shi R, Wang L. Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. BIOPHYSICS REVIEWS 2022; 3:021301. [PMID: 38505416 PMCID: PMC10914135 DOI: 10.1063/5.0054201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/27/2022] [Indexed: 03/21/2024]
Abstract
All-aqueous systems have attracted intensive attention as a promising platform for applications in cell separation, protein partitioning, and DNA extraction, due to their selective separation capability, rapid mass transfer, and good biocompatibility. Reliable generation of all-aqueous droplets with accurate control over their size and size distribution is vital to meet the increasingly growing demands in emulsion-based applications. However, the ultra-low interfacial tension and large effective interfacial thickness of the water-water interface pose challenges for the generation and stabilization of uniform all-aqueous droplets, respectively. Microfluidics technology has emerged as a versatile platform for the precision generation of all-aqueous droplets with improved stability. This review aims to systematize the controllable generation of all-aqueous droplets and summarize various strategies to improve their stability with microfluidics. We first provide a comprehensive review on the recent progress of all-aqueous droplets generation with microfluidics by detailing the properties of all-aqueous systems, mechanisms of droplet formation, active and passive methods for droplet generation, and the property of droplets. We then review the various strategies used to improve the stability of all-aqueous droplets and discuss the fabrication of biomaterials using all-aqueous droplets as liquid templates. We envision that this review will benefit the future development of all-aqueous droplet generation and its applications in developing biomaterials, which will be useful for researchers working in the field of all-aqueous systems and those who are new and interested in the field.
Collapse
Affiliation(s)
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
11
|
Sartipzadeh O, Naghib SM, Haghiralsadat F, Shokati F, Rahmanian M. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications. Sci Rep 2022; 12:8382. [PMID: 35589742 PMCID: PMC9120176 DOI: 10.1038/s41598-022-12031-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Droplet microfluidic has been established to synthesize and functionalize micro/nanoparticles for drug delivery and screening, biosensing, cell/tissue engineering, lab-on-a-chip, and organ-on-a-chip have attracted much attention in chemical and biomedical engineering. Chitosan (CS) has been suggested for different biomedical applications due to its unique characteristics, such as antibacterial bioactivities, immune-enhancing influences, and anticancer bioactivities. The simulation results exhibited an alternative for attaining visions in this complex method. In this regard, the role of the flow rate ratio on the CS droplet features, including the generation rate and droplet size, were thoroughly described. Based on the results, an appropriate protocol was advanced for controlling the CS droplet properties for comparing their properties, such as the rate and size of the CS droplets in the microchip. Also, a level set (LS) laminar two-phase flow system was utilized to study the CS droplet-breaking process in the Flow Focused-based microchip. The outcomes demonstrated that different sizes and geometries of CS droplets could be established via varying the several parameters that validated addressing the different challenges for several purposes like drug delivery (the droplets with smaller sizes), tissue engineering, and cell encapsulation (the droplets with larger sizes), lab-on-a-chip, organ-on-a-chip, biosensing and bioimaging (the droplets with different sizes). An experimental study was added to confirm the simulation results. A drug delivery application was established to verify the claim.
Collapse
Affiliation(s)
- Omid Sartipzadeh
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Perro A, Coudon N, Chapel JP, Martin N, Béven L, Douliez JP. Building micro-capsules using water-in-water emulsion droplets as templates. J Colloid Interface Sci 2022; 613:681-696. [DOI: 10.1016/j.jcis.2022.01.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
|
13
|
Experimental and numerical studies of liquid-liquid slug flows in micro channels with Y-junction inlets. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021; 122:7010-7060. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Ahmed T, Yamanishi C, Kojima T, Takayama S. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:231-255. [PMID: 33950741 DOI: 10.1146/annurev-anchem-091520-101759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phase separation is a common occurrence in nature. Synthetic and natural polymers, salts, ionic liquids, surfactants, and biomacromolecules phase separate in water, resulting in an aqueous two-phase system (ATPS). This review discusses the properties, handling, and uses of ATPSs. These systems have been used for protein, nucleic acid, virus, and cell purification and have in recent years found new uses for small organics, polysaccharides, extracellular vesicles, and biopharmaceuticals. Analytical biochemistry applications such as quantifying protein-protein binding, probing for conformational changes, or monitoring enzyme activity have been performed with ATPSs. Not only are ATPSs biocompatible, they also retain their properties at the microscale, enabling miniaturization experiments such as droplet microfluidics, bacterial quorum sensing, multiplexed and point-of-care immunoassays, and cell patterning. ATPSs include coacervates and may find wider interest in the context of intracellular phase separation and origin of life. Recent advances in fundamental understanding and in commercial application are also considered.
Collapse
Affiliation(s)
- Tasdiq Ahmed
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Cameron Yamanishi
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Taisuke Kojima
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Shuichi Takayama
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
16
|
Masukawa MK, Okuda Y, Takinoue M. Aqueous Triple-Phase System in Microwell Array for Generating Uniform-Sized DNA Hydrogel Particles. Front Genet 2021; 12:705022. [PMID: 34367260 PMCID: PMC8343185 DOI: 10.3389/fgene.2021.705022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022] Open
Abstract
DNA hydrogels are notable for their biocompatibility and ability to incorporate DNA information and computing properties into self-assembled micrometric structures. These hydrogels are assembled by the thermal gelation of DNA motifs, a process which requires a high salt concentration and yields polydisperse hydrogel particles, thereby limiting their application and physicochemical characterization. In this study, we demonstrate that single, uniform DNA hydrogel particles can form inside aqueous/aqueous two-phase systems (ATPSs) assembled in a microwell array. In this process, uniform dextran droplets are formed in a microwell array inside a microfluidic device. The dextran droplets, which contain DNA motifs, are isolated from each other by an immiscible PEG solution containing magnesium ions and spermine, which enables the DNA hydrogel to undergo gelation. Upon thermal annealing of the device, we observed the formation of an aqueous triple-phase system in which uniform DNA hydrogel particles (the innermost aqueous phase) resided at the interface of the aqueous two-phase system of dextran and PEG. We expect ATPS microdroplet arrays to be used to manufacture other hydrogel microparticles and DNA/dextran/PEG aqueous triple-phase systems to serve as a highly parallel model for artificial cells and membraneless organelles.
Collapse
Affiliation(s)
| | | | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
17
|
Zhou C, Zhu P, Han X, Shi R, Tian Y, Wang L. Microfluidic generation of ATPS droplets by transient double emulsion technique. LAB ON A CHIP 2021; 21:2684-2690. [PMID: 34170274 DOI: 10.1039/d1lc00351h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An aqueous two-phase system (ATPS) is considered as a promising candidate for biological applications due to its excellent permeability, selective separation, rapid mass transfer and all-biocompatible nature. However, it remains difficult to generate ATPS emulsions with controllable and prolonged stability due to ultra-low interfacial tension. Here, we present a transient double emulsion (TDE) technique to address this challenge. The method involves two steps: (i) water-in-oil-in-water (W1/O/W2) transient double emulsion droplets are first produced with droplet microfluidics by introducing an additional middle oil phase, and (ii) the W1/O/W2 droplets dewet into oil-in-water and ATPS droplets in a controllable manner. Using the TDE method, both dextran-in-polyethylene glycol (PEG) and PEG-in-dextran ATPS droplets can be generated with high uniformity (coefficient of variation (CV) ranging from 0.66% to 2.55%), a wide range of droplet sizes (∼100 to 250 μm in radius), and tunability in the generation frequency (∼4 to 170 Hz). Tuning the oil viscosity controls the destabilization time for on-demand dewetting and releasing of aqueous core droplets. The stability of ATPS droplets is significantly improved by storing aqueous droplets in double emulsion vessels, which would benefit various applications, such as small molecule encapsulation.
Collapse
Affiliation(s)
- Chunmei Zhou
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Xing Han
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Rui Shi
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Ye Tian
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China and College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Recktenwald SM, Wagner C, John T. Optimizing pressure-driven pulsatile flows in microfluidic devices. LAB ON A CHIP 2021; 21:2605-2613. [PMID: 34008605 DOI: 10.1039/d0lc01297a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unsteady and pulsatile flows receive increasing attention due to their potential to enhance various microscale processes. Further, they possess significant relevance for microfluidic studies under physiological flow conditions. However, generating a precise time-dependent flow field with commercial, pneumatically operated pressure controllers remains challenging and can lead to significant deviations from the desired waveform. In this study, we present a method to correct such deviations and thus optimize pulsatile flows in microfluidic experiments using two commercial pressure pumps. Therefore, we first analyze the linear response of the systems to a sinusoidal pressure input, which allows us to predict the time-dependent pressure output for arbitrary pulsatile input signals. Second, we explain how to derive an adapted input signal, which significantly reduces deviations between the desired and actual output pressure signals of various waveforms. We demonstrate that this adapted pressure input leads to an enhancement of the time-dependent flow of red blood cells in microchannels. The presented method does not rely on any hardware modifications and can be easily implemented in standard pressure-driven microfluidic setups to generate accurate pulsatile flows with arbitrary waveforms.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany. and Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - Thomas John
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
19
|
Experimental Studies of Droplet Formation Process and Length for Liquid–Liquid Two-Phase Flows in a Microchannel. ENERGIES 2021. [DOI: 10.3390/en14051341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, changes in the droplet formation mechanism and the law of droplet length in a two-phase liquid–liquid system in 400 × 400 μm standard T-junction microchannels were experimentally studied using a high-speed camera. The study investigated the effects of various dispersed phase viscosities, various continuous phase viscosities, and two-phase flow parameters on droplet length. Two basic flow patterns were observed: slug flow dominated by the squeezing mechanism, and droplet flow dominated by the shear mechanism. The dispersed phase viscosity had almost no effect on droplet length. However, the droplet length decreased with increasing continuous phase viscosity, increasing volume flow rate in the continuous phase, and the continuous-phase capillary number Cac. Droplet length also increased with increasing volume flow rate in the dispersed phase and with the volume flow rate ratio. Based on the droplet formation mechanism, a scaling law governing slug and droplet length was proposed and achieved a good fit with experimental data.
Collapse
|
20
|
Li D, Cao Y, Huang B, Han M, Wu X, Sun Q, Zheng C, Zhao L, Ma C, Jin H, Wang X, Liu Y, Zhang Y. Active Femtoliter Droplet Generation in Microfluidics by Confined Interface Vibration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1297-1305. [PMID: 33428403 DOI: 10.1021/acs.langmuir.0c03368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The precise and effective generation of micron-sized droplets is one of the most common and important issues for droplet-based microfluidics. Active droplet generation makes use of additional energy input in promoting interfacial instabilities for droplet generation. Here, we report a new technique for the active generation of femtoliter droplets in microfluidic systems using confined interfacial vibration (CIV). The CIV is formed at the orifice of a traditional inkjet nozzle first by pushing the liquid out and then pulling it back. Droplets are pinched off during the withdrawal process, and this is different from the current active droplet generation techniques, which only monodirectionally push the liquid out. Droplets with radius ranging from ca. 1 to 28 μm can be actively generated by CIV at an orifice with radius 30 μm, distinguishing from conventional active generation techniques in which the droplets are always comparable or slightly bigger than the orifice. Experimental results showed that the droplet volume can be customized by controlling the intensity of the CIV. The inherent digital nature of the inkjet technique enables easy and precise regulating of the droplet volume, making it seamlessly compatible with the digital microfluidic systems.
Collapse
Affiliation(s)
- Dege Li
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yi Cao
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Bingfang Huang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Molong Han
- Centre of Micro-photonics, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xinlei Wu
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qiang Sun
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chao Zheng
- Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, U.K
| | - Lilong Zhao
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Chi Ma
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Hui Jin
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaolong Wang
- Dongying Science and Technology Bureau, Dongying 257000, China
| | - Yonghong Liu
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yanzhen Zhang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Centre of Micro-photonics, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
21
|
Seo H, Nam C, Kim E, Son J, Lee H. Aqueous Two-Phase System (ATPS)-Based Polymersomes for Particle Isolation and Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55467-55475. [PMID: 33237722 DOI: 10.1021/acsami.0c16968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Aqueous two-phase systems (ATPSs) have been widely used in the separation, purification, and enrichment of biomolecules for their excellent biocompatibility. While ultracentrifugation and microfluidic devices have been combined with ATPS to facilitate the separation of biomolecules and achieve high recovery yields, they often lack the ability to effectively isolate and separate biomolecules in low concentrations. In this work, we present a strategy that leverages the preferential partitioning of biomolecules in ATPS droplets to efficiently separate model extracellular vesicle (EV) particles. We demonstrate that the additional oil phase between the inner ATPS droplets and the aqueous continuous phase in triple emulsion droplets resolves the size controllability and instability issues of ATPS droplets, enabling the production of highly monodisperse ATPS-based polymersomes with enhanced stability for effective isolation of ATPS droplets from the surrounding environment. Furthermore, we achieve separation of model EV particles in a single dextran (DEX)-rich droplet by the massive production of ATPS-based polymersomes and osmotic-pressure-induced rupture of the selected polymersome in a hypertonic solution composed of poly(ethylene glycol) (PEG).
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Changwoo Nam
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deogjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do 54896, Korea
| | - Eunseo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Juhyun Son
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
22
|
Nan L, Cao Y, Yuan S, Shum HC. Oil-mediated high-throughput generation and sorting of water-in-water droplets. MICROSYSTEMS & NANOENGINEERING 2020; 6:70. [PMID: 34567680 PMCID: PMC8433215 DOI: 10.1038/s41378-020-0180-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/17/2020] [Accepted: 05/06/2020] [Indexed: 05/27/2023]
Abstract
Aqueous two-phase system (ATPS) droplets have demonstrated superior compatibility over conventional water-in-oil droplets for various biological assays. However, the ultralow interfacial tension hampers efficient and stable droplet generation, limiting further development and more extensive use of such approaches. Here, we present a simple strategy to employ oil as a transient medium for ATPS droplet generation. Two methods based on passive flow focusing and active pico-injection are demonstrated to generate water-water-oil double emulsions, achieving a high generation frequency of ~2.4 kHz. Through evaporation of the oil to break the double emulsions, the aqueous core can be released to form uniform-sized water-in-water droplets. Moreover, this technique can be used to fabricate aqueous microgels, and the introduction of the oil medium enables integration of droplet sorting to produce single-cell-laden hydrogels with a harvest rate of over 90%. We believe that the demonstrated high-throughput generation and sorting of ATPS droplets represent an important tool to advance droplet-based tissue engineering and single-cell analyses.
Collapse
Affiliation(s)
- Lang Nan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuai Yuan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
23
|
Chao Y, Hung LT, Feng J, Yuan H, Pan Y, Guo W, Zhang Y, Shum HC. Flower-like droplets obtained by self-emulsification of a phase-separating (SEPS) aqueous film. SOFT MATTER 2020; 16:6050-6055. [PMID: 32490476 DOI: 10.1039/d0sm00660b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-emulsification, referring to the spontaneous formation of droplets of one phase in another immiscible phase, is attracting growing interest because of its simplicity in creating droplets. Existing self-emulsification methods usually rely on phase inversion, temperature cycling, and solvent evaporation. However, achieving spatiotemporal control over the morphology of self-emulsified droplets remains challenging. In this work, a conceptually new approach of creating both simple and complex droplets by self-emulsification of a phase-separating (SEPS) aqueous film, is reported. The aqueous film is formed by depositing a surfactant-laden aqueous droplet onto an aqueous surface, and the fragmentation of the film into droplets is triggered by a wetting transition. Smaller and more uniform droplets can be achieved by introducing liquid-liquid phase separation (LLPS). Moreover, properly modulating quadruple LLPS and film fragmentation enables the creation of highly multicellular droplets such as flower-like droplets stabilized by the interfacial self-assembly of nanoparticles. This work provides a novel strategy to design aqueous droplets by LLPS, and it will inspire a wide range of applications such as membraneless organelle synthesis, cell mimics and delivery.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Lap Tak Hung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana Champaign Urbana, Illinois 61801, USA
| | - Hao Yuan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China. and Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Yi Pan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yage Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
24
|
|
25
|
Pavlovic M, Antonietti M, Schmidt BVKJ, Zeininger L. Responsive Janus and Cerberus emulsions via temperature-induced phase separation in aqueous polymer mixtures. J Colloid Interface Sci 2020; 575:88-95. [PMID: 32361049 DOI: 10.1016/j.jcis.2020.04.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Complex aqueous emulsions represent a promising material platform for the encapsulation of cells, pharmaceuticals, or nutrients, for the fabrication of structured particles, as well as for mimicking the barrier-free compartmentalization of biomolecules found in living cells. Herein, we report a novel, simple, and scalable method of creating multicomponent aqueous droplets with highly uniform internal droplet morphologies that can be controllably altered after emulsification by making use of a thermal phase separation approach. Specifically, temperature-induced phase separation inside as-formed emulsion droplets comprising aqueous mixtures of two or more hydrophilic polymers allows for the generation of Janus and Cerberus emulsion droplets with adjustable internal morphologies that are solely controlled by a balance of interfacial tensions. We demonstrate our approach by applying both, microfluidic and scalable batch production, and present a detailed model study with predictive capabilities that enables fine-tuning and dynamically altering the droplet morphology as a function of types, molecular weights, and hydrophilicities of the polymers as well as the surfactant hydrophilic-lipophilic balance. The ability to rationally design complex aqueous emulsion droplets with previously unattainable dynamic control over their morphologies after emulsification entails the potential to design new responsive soft materials with implications for a variety of applications beyond encapsulation, including the design of complex adaptive and self-regulating materials, e.g. for chemical and biological sensing applications.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
26
|
Navi M, Abbasi N, Salari A, Tsai SSH. Magnetic water-in-water droplet microfluidics: Systematic experiments and scaling mathematical analysis. BIOMICROFLUIDICS 2020; 14:024101. [PMID: 32161632 PMCID: PMC7056455 DOI: 10.1063/1.5144137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/23/2020] [Indexed: 05/30/2023]
Abstract
A major barrier to the clinical utilization of microfluidically generated water-in-oil droplets is the cumbersome washing steps required to remove the non-biocompatible organic oil phase from the droplets. In this paper, we report an on-chip magnetic water-in-water droplet generation and manipulation platform using a biocompatible aqueous two-phase system of a polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG) and dextran (DEX), eliminating the need for subsequent washing steps. By careful selection of a ferrofluid that shows an affinity toward the DEX phase (the dispersed phase in our microfluidic device), we generate magnetic DEX droplets in a non-magnetic continuous phase of PEG-PPG-PEG. We apply an external magnetic field to manipulate the droplets and sort them into different outlets. We also perform scaling analysis to model the droplet deflection and find that the experimental data show good agreement with the model. We expect that this type of all-biocompatible magnetic droplet microfluidic system will find utility in biomedical applications, such as long-term single cell analysis. In addition, the model can be used for designing experimental parameters to achieve a desired droplet trajectory.
Collapse
|
27
|
Guerrero J, Chang YW, Fragkopoulos AA, Fernandez-Nieves A. Capillary-Based Microfluidics-Coflow, Flow-Focusing, Electro-Coflow, Drops, Jets, and Instabilities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904344. [PMID: 31663270 DOI: 10.1002/smll.201904344] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Capillary-based microfluidics is a great technique to produce monodisperse and complex emulsions and particulate suspensions. In this review, the current understanding of drop and jet formation in capillary-based microfluidic devices for two primary flow configurations, coflow and flow-focusing is summarized. The experimental and theoretical description of fluid instabilities is discussed and conditions for controlled drop breakup in different modes of drop generation are provided. Current challenges in drop breakup with low interfacial tension systems and recent progress in overcoming drop size limitations using electro-coflow are addressed. In each scenario, the physical mechanisms for drop breakup are revisited, and simple scaling arguments proposed in the literature are introduced.
Collapse
Affiliation(s)
- Josefa Guerrero
- Department of Chemistry and Physics, Augusta University, Augusta, GA, 30912, USA
| | - Ya-Wen Chang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Alexandros A Fragkopoulos
- Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, 37077, Göttingen, Germany
| | - Alberto Fernandez-Nieves
- School of Physics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Condensed Matter Physics, University of Barcelona, 08028, Barcelona, Spain
- ICREA-Institució Caalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|
28
|
Dincau B, Dressaire E, Sauret A. Pulsatile Flow in Microfluidic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904032. [PMID: 31657131 DOI: 10.1002/smll.201904032] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
This review describes the current knowledge and applications of pulsatile flow in microfluidic systems. Elements of fluid dynamics at low Reynolds number are first described in the context of pulsatile flow. Then the practical applications in microfluidic processes are presented: the methods to generate a pulsatile flow, the generation of emulsion droplets through harmonic flow rate perturbation, the applications in mixing and particle separation, and the benefits of pulsatile flow for clog mitigation. The second part of the review is devoted to pulsatile flow in biological applications. Pulsatile flows can be used for mimicking physiological systems, to alter or enhance cell cultures, and for bioassay automation. Pulsatile flows offer unique advantages over a steady flow, especially in microfluidic systems, but also require some new physical insights and more rigorous investigation to fully benefit future applications.
Collapse
Affiliation(s)
- Brian Dincau
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Emilie Dressaire
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
29
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|
30
|
Prediction of Droplet Production Speed by Measuring the Droplet Spacing Fluctuations in a Flow-Focusing Microdroplet Generator. MICROMACHINES 2019; 10:mi10120812. [PMID: 31775320 PMCID: PMC6952780 DOI: 10.3390/mi10120812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
Abstract
In a flow-focusing microdroplet generator, by changing the flow rates of the two immiscible fluids, production speed can be increased from tens to thousands of droplets per second. However, because of the nonlinearity of the flow-focusing microdroplet generator, the production speed of droplets is difficult to quantitatively study for the typical flow-focusing geometry. In this paper, we demonstrate an efficient method that can precisely predict the droplet production speed for a wide range of fluid flow rates. While monodisperse droplets are formed in the flow-focusing microchannel, droplet spacing as a function of time was measured experimentally. We discovered that droplet spacing changes periodically with time during each process of droplet generation. By comparing the frequency of droplet spacing fluctuations with the droplet production speed, precise predictions of droplet production speed can be obtained for different flow conditions in the flow-focusing microdroplet generator.
Collapse
|
31
|
Mastiani M, Firoozi N, Petrozzi N, Seo S, Kim M. Polymer-Salt Aqueous Two-Phase System (ATPS) Micro-Droplets for Cell Encapsulation. Sci Rep 2019; 9:15561. [PMID: 31664112 PMCID: PMC6820865 DOI: 10.1038/s41598-019-51958-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Biosample encapsulation is a critical step in a wide range of biomedical and bioengineering applications. Aqueous two-phase system (ATPS) droplets have been recently introduced and showed a great promise to the biological separation and encapsulation due to their excellent biocompatibility. This study shows for the first time the passive generation of salt-based ATPS microdroplets and their biocompatibility test. We used two ATPS including polymer/polymer (polyethylene glycol (PEG)/dextran (DEX)) and polymer/salt (PEG/Magnesium sulfate) for droplet generation in a flow-focusing geometry. Droplet morphologies and monodispersity in both systems are studied. The PEG/salt system showed an excellent capability of uniform droplet formation with a wide range of sizes (20-60 μm) which makes it a suitable candidate for encapsulation of biological samples. Therefore, we examined the potential application of the PEG/salt system for encapsulating human umbilical vein endothelial cells (HUVECs). A cell viability test was conducted on MgSO4 solutions at various concentrations and our results showed an adequate cell survival. The findings of this research suggest that the polymer/salt ATPS could be a biocompatible all-aqueous platform for cell encapsulation.
Collapse
Affiliation(s)
- Mohammad Mastiani
- Center for Biosignatures Discovery Automation, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Negar Firoozi
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Nicholas Petrozzi
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Seokju Seo
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA
| | - Myeongsub Kim
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL, 33431, USA.
| |
Collapse
|
32
|
Sun H, Zheng H, Tang Q, Dong Y, Qu F, Wang Y, Yang G, Meng T. Monodisperse Alginate Microcapsules with Spatially Confined Bioactive Molecules via Microfluid-Generated W/W/O Emulsions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37313-37321. [PMID: 31517474 DOI: 10.1021/acsami.9b12479] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A simple process is developed for the one-step preparation of dual-compartment alginate microcapsules with controlled size and structure from microfluid-generated water-in-water-in-oil (W/W/O) emulsion droplet. Unlike other methods that rely on transient W/W/O emulsion droplet, we introduce an aqueous two-phase system (ATPS) to form a stable W/W/O emulsion droplet as a template for preparing dual-compartment alginate microcapsules. Two different bioactive molecules are able to be spatially confined encapsulated in the shell and core of alginate microcapsules due to the partitioning effect of ATPS and the high viscosity of alginate solution. Moreover, an enzyme cascade reaction with a spatial confined glucose oxidase and horseradish peroxidase in the shell and core of alginate microcapsules confirms its excellent biocompatibility and high activity. This method provides a green platform for enzyme-catalyzed tandem reactions and controlled sequential release of multiple drugs based on alginate microcapsules.
Collapse
|
33
|
Jeyhani M, Gnyawali V, Abbasi N, Hwang DK, Tsai SS. Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation. J Colloid Interface Sci 2019; 553:382-389. [DOI: 10.1016/j.jcis.2019.05.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/09/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023]
|
34
|
Zou Y, Song J, You X, Yao J, Xie S, Jin M, Wang X, Yan Z, Zhou G, Shui L. Interfacial Complexation Induced Controllable Fabrication of Stable Polyelectrolyte Microcapsules Using All-Aqueous Droplet Microfluidics for Enzyme Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21227-21238. [PMID: 31091079 DOI: 10.1021/acsami.9b02788] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water-in-water (w/w) emulsions are particularly advantageous for biomedical-related applications, such as cell encapsulation, bioreactors, biocompatible storage, and processing of biomacromolecules. However, due to ultralow interfacial tension, generation and stabilization of uniform w/w droplets are challenging. In this work, we report a strategy of creating stable and size-controllable w/w droplets that can quickly form polyelectrolyte microcapsules (PEMCs) in a microfluidic device. A three-phase (inner, middle, outer) aqueous system was applied to create a stream of inner phase, which could be broken into droplets via a mechanical perturbation frequency, with size determined by the stream diameter and vibration frequency. The interfacial complexation is formed via electrostatic interaction of polycations of poly(diallyldimethylammoniumchloride) with polyanions of polystyrene sodium sulfate in the inner and outer phases. With addition of negatively charged silica nanoparticles, the stability, permeability, and mechanical strength of the PEMC shell could be well manipulated. Prepared PEMCs were verified by encapsulating fluorescein isothiocyanate-labeled dextran molecules and stimuli-triggered release by varying the pH value or osmotic pressure. A model enzyme, trypsin, was successfully encapsulated into PEMCs and released without impairing their catalytic activity. These results highlight its potential applications for efficient encapsulation, storage, delivery, and release of chemical, biological, pharmaceutical, and therapeutic agents.
Collapse
Affiliation(s)
| | - Jing Song
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research) , 2 Fusionopolis Way, Innovis, #08-03 , 138634 Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Liu C, Zheng W, Xie R, Liu Y, Liang Z, Luo G, Ding M, Liang Q. Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Navi M, Abbasi N, Jeyhani M, Gnyawali V, Tsai SSH. Microfluidic diamagnetic water-in-water droplets: a biocompatible cell encapsulation and manipulation platform. LAB ON A CHIP 2018; 18:3361-3370. [PMID: 30375625 DOI: 10.1039/c8lc00867a] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Droplet microfluidics enables cellular encapsulation for biomedical applications such as single-cell analysis, which is an important tool used by biologists to study cells on a single-cell level, and understand cellular heterogeneity in cell populations. However, most cell encapsulation strategies in microfluidics rely on random encapsulation processes, resulting in large numbers of empty droplets. Therefore, post-sorting of droplets is necessary to obtain samples of purely cell-encapsulating droplets. With the recent advent of aqueous two-phase systems (ATPS) as a biocompatible alternative of the conventional water-in-oil droplet systems for cellular encapsulation, there has also been a focus on integrating ATPS with droplet microfluidics. In this paper, we describe a new technique that combines ATPS-based water-in-water droplets with diamagnetic manipulation to isolate single-cell encapsulating water-in-water droplets, and achieve a purity of 100% in a single pass. We exploit the selective partitioning of ferrofluid in an ATPS of polyethylene glycol-polypropylene glycol-polyethylene glycol triblock copolymer (PEG-PPG-PEG) and dextran (DEX), to achieve diamagnetic manipulation of water-in-water droplets. A cell-triggered Rayleigh-Plateau instability in the dispersed phase thread results in a size distinction between the cell-encapsulating and empty droplets, enabling diamagnetic separation and sorting of the cell-encapsulating droplets from empty droplets. This is a simple and biocompatible all-aqueous platform for single-cell encapsulation and droplet manipulation, with applications in single-cell analysis.
Collapse
Affiliation(s)
- Maryam Navi
- Graduate Program in Biomedical Engineering, Ryerson University, Toronto, Canada.
| | | | | | | | | |
Collapse
|
38
|
Liu HT, Wang H, Wei WB, Liu H, Jiang L, Qin JH. A Microfluidic Strategy for Controllable Generation of Water-in-Water Droplets as Biocompatible Microcarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801095. [PMID: 30091845 DOI: 10.1002/smll.201801095] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/16/2018] [Indexed: 05/14/2023]
Abstract
Droplet microfluidics has been widely applied in functional microparticles fabricating, tissue engineering, and drug screening due to its high throughput and great controllability. However, most of the current droplet microfluidics are dependent on water-in-oil (W/O) systems, which involve organic reagents, thus limiting their broader biological applications. In this work, a new microfluidic strategy is described for controllable and high-throughput generation of monodispersed water-in-water (W/W) droplets. Solutions of polyethylene glycol and dextran are used as continuous and dispersed phases, respectively, without any organic reagents or surfactants. The size of W/W droplets can be precisely adjusted by changing the flow rate of dispersed and continuous phases and the valve switch cycle. In addition, uniform cell-laden microgels are fabricated by introducing the alginate component and rat pancreatic islet (β-TC6) cell suspension to the dispersed phase. The encapsulated islet cells retain high viability and the function of insulin secretion after cultivation for 7 days. The high-throughput droplet microfluidic system with high biocompatibility is stable, controllable, and flexible, which can boost various chemical and biological applications, such as bio-oriented microparticles synthesizing, microcarriers fabricating, tissue engineering, etc.
Collapse
Affiliation(s)
- Hai-Tao Liu
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Wang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Bo Wei
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hui Liu
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lei Jiang
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian-Hua Qin
- Division of Biotechnology, CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
39
|
Mastiani M, Seo S, Mosavati B, Kim M. High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics. ACS OMEGA 2018; 3:9296-9302. [PMID: 31459062 PMCID: PMC6645416 DOI: 10.1021/acsomega.8b01768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 05/29/2023]
Abstract
Aqueous two-phase system (ATPS) droplet generation has significant potential in biological and medical applications because of its excellent biocompatibility. However, the ultralow interfacial tension of ATPS makes droplet generation extremely challenging when compared with the conventional water-in-oil (W/O) system. In this paper, we passively produced ATPS droplets with a wide range of droplet size and high production rate without the involvement of an oil phase and external forces. For the first time, we reported important information of the flow rate and capillary (Ca) number for passive, oil-free ATPS droplet generation. It was found that the range of Ca numbers of the continuous phase under the jetting flow regime is 0.3-1.7, as compared to less than 0.1 in the W/O system, indicating the ultralow interfacial tension in ATPS. In addition, we successfully generated ATPS droplets with a radius as small as 7 μm at the maximum frequency up to 300 Hz, which has not been achieved in previous studies. The size and generation frequency of ATPS droplets can be controlled independently by adjusting the inlet pressures and corresponding flow rates. We found that the droplet size is correlated with the pressure and flow rate ratios with the power-law exponents of 0.8 and 0.2, respectively.
Collapse
|